4/28/2014

Sean Gibbens, Phil Dwyer, Adam Sanders, and Max Brodbeck

Table of Contents

Abstract

Chapter 0: Introduction
Problem Statement
Requirements
Description of Software Development Process
Team Structure and Roles
Organization of Report

Chapter 1: Project Iteration 1

Analysis:
Analysis Domain Model

Requirements:
Use Case Diagram: All Requirements
Use Case Scenarios
High-Level Sequence Diagrams
CRC Cards
High-Level Analysis Class Diagram
Package Diagrams

Design:
Detailed Class Diagram
Detailed Interaction Diagrams
Overall GUI Design
Package Diagrams

Implementation:
Tested Code
Organization using Package Diagrams

Chapter 2: Project Iteration 2

Analysis:
Analysis Domain Model

Requirements:
Use Case Diagram: All Requirements
Use Case Scenarios
High-Level Sequence Diagrams
CRC Cards
High-Level Analysis Class Diagram
Package Diagrams

Design:
Detailed Class Diagram
Detailed Interaction Diagrams
Overall GUI Design
Package Diagrams

Implementation:
Tested Code
Organization using Package Diagrams

Pg.

Pg.
Pg.
Pg.
Pg.
Pg.

Pg.

Pg.
Pg.
Pg.
Pg.
Pg.
Pg.

Pg.
Pg.
Pg.
Pg.

Pg.
PgY.

Pg.

Pg.
PgY.
PgY.
Pg.
Pg.
Pg.

Pg.
Pg.
Pg.
Pg.

Pg.
Pg.

3

4-5
6-7

11-12
13-16
17-22
23-24
25
25

26
27-32
33-38
39

40
40

41

42-43
44-52
53-66
67-69
70
70

71-76
77-90
91-105
106-107

108
108

Chapter 3: Project Iteration 3
Static Design Model with Modifications
Dynamic Design Model with Modifications
GUI Model
Discussion on Flexibility of Design
Tested Code added to Existing Code

Chapter 4: Conclusions
Views on Software Development and Engineering
Thoughts on Object-oriented Approach

Chapter 5: Team Organization and Roles
Role and Detailed Contribution of Each Member
Overall Work Division and Execution

Appendices
Peer Evaluation Forms

Final CRC Cards
Final Use-case Diagram

Pg.
Pg.
Pg.
Pg.
Pg.

Pg.
Pg.

Pg.
Pg.

Pg.
Pg.
Pg.
Pg.

110-117
118-129
130-151
152
152

153
153

154
154

155-181
155-177
178-180
181

Abstract

In this project, we were assigned to work on the Just the Job project description located in
our textbook. Throughout the semester this spring, we have worked on three iterations to produce
the software described in the requirements of our project. With this process, we overcame issues
involving learning new subjects and scheduling with team members. As we progressed through
our education of this class, we developed multiple static and dynamic design diagrams that
correlated to our actual code for the software. These diagrams helped our group map and develop
our code by defining our objects in entities, controllers, and boundaries. With our functionality
working for each iteration, we looked into improving our GUI design. This is very noticeable in
the transition from iteration one to iteration two. To complete our analysis, we looked at the
back-end of our software, which we continued to use common separated value (CSV) text files
instead of using an Access database back-end. As a group, we wanted this software to have an
easier transition to a new back-end source. In the end, as a group we feel that our software is

very functional and covers the requirements stated by the project description for Just the Job.

Chapter 0: Introduction

Problem Statement:

Just the Job is a company that provides house cleaning services on a one-off basis, for

example when people move house.

At the moment, when a potential customer contacts the Just the Job office, the
receptionist books an appointment for the office manager to visit the property to be cleaned and
give the customer a date and price for the job. Once these have been agreed, a booking form is
filled out; one copy of the form is given to the customer and two copies are filed at the Just the

Job office.

On the date arranged, a team of two or three cleaners arrive at the property and carry out
the cleaning as specified. The customer then signs a copy of the original booking form to
confirm the job has been carried out satisfactorily. When the signed booking form arrives back at
the Just the Job office, the receptionist sends an invoice to the customer for the payment. A

receipted copy of the invoice is sent to the customer when full payment is received.

Just the Job also deals with customers who require cleaning services on a regular basis.
This cleaning is carried out on the same day each week, and is charged at an hourly rate,
negotiated with the customer. The office manager tries to send the same cleaner each week, as

this helps customer relations.

Just the Job allocates customer numbers and keeps details on file of all its customers for
marketing purposes. The office also keeps records of all the cleaners, including name, address,

contact number and the number of hours worked each week.

4

The office manager has decided that she needs a new computer system to handle most of

the paperwork involved in Just the Job’s daily routines.

The new system must keep a record of customers, cleaners and jobs. The office manager,
Eileen, wants to be able to use the system to produce printed monthly invoices for regular
customers and one-off invoices for single jobs. She would also like the system to produce a
weekly schedule for each cleaner showing where and when they are working. This will be given
to the cleaners at the start of the week along with a copy of the Booking Form for the customer to
complete. The system will also be used to produce a weekly list showing how many hours each

cleaner has worked.

Invoices for one-off jobs are to be printed and sent out as soon as the signed booking
form is returned to the office. Invoices for regular jobs are to be printed and sent out once a
month. Customers who have regular cleaning jobs on several properties should receive a single

invoice.

Eileen would also like the system to be able to keep track of her appointments and

produce a printed schedule for her.

Requirements

1. Manage customers (R & M)

. Add a new customer (R)

. Delete an existing customer (M)

. Modify information stored about an existing customer (R)

. Display/print information about an existing customer based on his/her id or name (R)
. Display/print a list of all customers and their information (R)

®® O O T o

2. Manage employee (i.e. cleaner) (M & R)

a. Add a new employee—name, id, address, pay-rate, weekly schedule, etc. (R)
b. Delete an existing employee (M)

c. Display/print information about an existing employee (R)

d. Display/print a list of all employees with their information (R)

e. Modify information stored about an existing employee (R)

3. Manage jobs/appointments (M & R)

a. Add/register a new job (R)
b. Delete/cancel an existing job (M)

c. Display/print the status of a specific job (e.g. job number; address of property, completion
status, by-whom etc.) (R)

d. Display/print a list of all jobs with their completion status (R)
e. Display/print a list of all completed jobs (R)

f. Display/print a list of all pending jobs (R)

g. Modify information stored about an existing job (R)

4. Manage customer invoices for one-time jobs (R & M)

a. Create a new invoice (R)
b. Cancel an existing invoice (M)

¢. Modify an existing invoice (R)
d. Display/print an existing invoice (R)
e. Display/print a list of all invoices and their payment status (R)

5. Manage customer invoices for regular jobs (R & M)

. Create a new invoice (R)

. Cancel an existing invoice (M)

. Modify an existing invoice (R)

. Display/print an existing invoice (R)

. Display/print a list of all invoices for a given week with payment status (R)

O o O T &

6. Manage customer payments (R & M)

a. Record a full payment (R)
b. Cancel/credit a payment (M)
c. Print receipt (R)

7. Maintain manager’s personal weekly schedule (R)

. Add a new appointment (R)

. Cancel an existing appointment (R)
. Modify an existing appointment (R)
. Print weekly schedule (R)

o O T o

8. Save information (R & M)

Upon user request, save all data to disk at any time. (This is in addition to the automatic save to
disk which occurs at shutdown)

Description of Software Development Process

We developed our software using the Agile Software Development with three separate
iterations. The first iteration developed basic functionality with only a select number of basic
requirements like add customers, employees, and jobs. This was helpful for our group to handle
as these use cases were the foundation of the software as other entities and use cases branched
from the three basic entities. Also with the first iteration, we basically disregard the GUI as we
rated functionality more important as the front-end. The GUI can also be redone after
functionality is completed. After our first presentation to the class, we reviewed our diagrams
and code with new requirements to add on top of our work. This was very helpful in that we
could diagnose our problems and find solutions before our software and documentation became
too voluminous.

In our second iteration, we added more specific use cases to our basic entities and
developed our GUI to a more recognizable version of what we have now. In our GUI during this
iteration, we added list boxes and buttons with multiple windows including a log-in form. We
also developed our back-end by using our object entities and write to common separated value
(CSV) text files. This was completed during the second iteration as we give our three basic
entities all of their use cases and we could develop a standard save-to-file process. After this
work was completed, we had another presentation to get outside opinions. With these opinions,
we consider the criticism and revised our code and documentation.

In the third iteration, we were asked to branch out with new use cases and entities. Just
like the other two iterations, we reviewed and redeveloped our documentation and code. By
working on chunks of the requirements, we were able to focus on certain tasks and correctly
develop our software. This process also helped us develop a working foundation that was very
simple to add on to our software.

Team Structure and Roles

Our team had a very balanced work format with all four members having the same
experiences in programming. We did not need a leader for our team as everyone held each other
accountable for their parts of the project. Overall, our team worked very efficiently and was able

to find time in our busy schedules to meet as a team to get the work needed completed.
Roles

Sean Gibbens — Diagram Lead

Phil Dwyer — Team/Documentation Lead

Adam Sanders — Code Lead

Max Brodbeck — The Dabbler (worked on everything including diagrams and code)

Organization of Report

In this report, you will encounter our understanding and development of Unified
Modelling Language (UML) diagrams and the programming language of VB.NET. In the first
chapter, the report describes our first iteration and shows our output from this iteration, which
includes our first diagrams and code. In the second and third chapters, the report describes the
other two iterations and displays our improvements on our diagrams and code from criticism
received during presentations in class. The fourth chapter sums up our thoughts on the project
and software engineering as a whole. In the fifth chapter, the report will explain our more
detailed roles and how we executed these roles as members of Team SPAM. For all of other
documentation including peer evaluation forms please refer to the Appendices at the end of this
report.

Chapter 1: Project Iteration 1

Analysis

Analysis Domain Model

Our analysis domain model for Iteration 1 was the most high-level diagram we produced, as it
attempts to model all of the classes in the problem domain in one go. We created this first
domain model based upon the noun analysis and formation of candidate classes. Each conceptual
entity class has a relationship with the other classes, and these connections are meant to outline
the structure for the future code.

Payment <Class>

Amount
Customer

Invoice <Class>

Jobs Performed
Amount Owed

1.*

1

1 Customer <Class>

Name
Address

Appointment <Class>

Date
Time
Description

10

1 *
- Job <Class>

Description
Employees involved
Location

Employee <Class>

Name
PayRate
Hour Shifts

Requirements

Use Case Diagram

Note: In this use-case diagram, we covered all requirements for the project. This diagram
contains all completed use cases in green ovals. These completed use cases were our tasks we
focused on Iteration 1. We did not implement the generalization arrow for this iteration as we
were inexperienced with use-case diagrams. The diagram is located on next page. To view the
diagram at closer look, refer to our wiki page on Moodle.

11

fianage Custom
(M&R) = Add customer

Modify customer info
-~ Display customer info
Display customer ist
flanage Customers

(Manager only

anage Employee

s

<extends>

p—

cextend>>

Display employee info
p anage Employee’ N Ry
(Manager only) -SSR B Dispiay employee list

Modify employee info,

_____ Add new job
- <>
nage jobs/appointmen NN w

(Manager only) Tl

Display job list w/ completion
K Display completed job list

IR Display pending job list
Modify job info
Manage customer invoices for one-time jobs S REEEEEE <certends — —— — — —— = @
// @
T -
T P
-7 s - <

Manage customer invoices for all jobs
(Manager Only)

<cpteritn

<cextend>>

<cextend>>

Manage customer invoices for regular jobs

Manage customer payments 38

~ecextend>—

<cextends>

___ccentend>”

anage customer payment
(Manager only)

Maintain manager's personal weekly schedulc SumES_- Ww

T ccentend>> _

print weekly schedule

Save information

12

Use Case Scenarios

Use-case: Add a new customer (1.a)
Actor(s): Manager, Receptionist
Goal: To have a manager or receptionist add a new customer into the system

Overview: The manager or receptionist accesses the system. They then enter the “add” section of
the system. Then they go to “add customer” and enter all of the necessary customer info.

Typical course of events:

Actor Action System Response

1. Manger or receptionist accesses system

2. Goes to “add” section

3. Goes to “add customer” section 4. Displays “add customer” form

5. Fills out all necessary information and submits 6. Verifies all info is filled out
7. Enters customer info system

Alternative courses:

2. User goes to the wrong section. Would have to go back a page and try again. (alternate)

3. User goes to “add job” or “add employee” instead of “add customer”. Requires the user to go
back a page and try again. (alternate)

5. User enters some wrong information about the customer. This will be caught by system in step
6. (alternate)

5. User forgets to submit form. (alternate)

Use-case: Display a list of all customers and their information (1.e)

Actor(s): Manager, Receptionist

Goal: To have a manager or receptionist display a complete list of customers and their
information

Overview: The manager or receptionist accesses the system. They enter the “customer” section
of the system. They then select the “display all” link on this page.

Typical course of events:

Actor Action System Response

1. Manager or receptionist accesses system

2. Goes to “customer” section

3. Clicks on “display all” link 4. Displays list of all customers and info

Alternative courses:

2. User goes to the wrong section. Would have to go back and try again. (alternate)
3. User clicks on the wrong link. Would have to go back and try again. (alternate)

13

Use Case: Add a new employee (2.a)

Actor(s): Receptionist, Manager

Goal: Enter a new employees information into the system. This information includes the
employees name, id, address, weekly schedule, pay-rate, etc.

Overview: The Receptionist or Manager accesses the system. They select the ‘add’ section. They
then select the new employee section, and fill out the form boxes to enter in information about
the employee.

Typical Course of Events:
Actor’s Action System Response

1. The Receptionist or Manger goes to the ‘add’
section.
2. They should then go to the ‘add new employee’ section.
3. They then put that employees information into the
correct sections, and submit it.
4. Verify that all the information has been entered
And the correct number of digits has been entered
correctly, i.e. for a phone number.
The information is saved after it is verified.

Alternatives:

Step 1. They choose the wrong section, and have to return to the home page.

Step 2. They choose a different addition section, such as customer, and will have to return to the
add page.

Step 3,4. They enter information in the wrong field, for example if they were to put an id number
into the name section, the system should catch clearly incorrect information such as this.

Step 3,4. They forget to hit submit, and will have to reenter the information.

14

Use Case: Display a list of all employees with their information (2.d)

Actor(s): Receptionist, Manager
Goal: A list of all employees, including their information, is displayed on the screen.

Overview: The Receptionist or Manager goes to the employee section. They choose the ‘display
all’ link, and a list of all employees with their information is displayed.

Typical Course of Events:
Actor’s Actions System Response
1. The Receptionist or Manger goes to the ‘employee’ section
2. They then select the ‘display all’ link.
3. The system displays a list of
all employees with their information.

Alternative:
Step 1 They choose the wrong section, and have to return to the home page.
Step 2 They choose the wrong link, and must return to the employee section.

Use Case: Add/Register a new job (3.a)
Actor(s): Receptionist, Manager
Goal: Enter a job into the system so that employees can be dispatched to it.

Overview: The Receptionist or Manager accesses the system. They select the ‘add’ section. They
then select the ‘add new job’ section. After that they are taken to a page where they can enter
information such as location and description.

Typical Course of Events:
Actor’s Action System Response
1. The Receptionist or Manger goes to the ‘add’
section.
2. They should then go to the ‘add new job’ section.
3. They then put the proper information about the job into the
System, and then hit submit.
4. The information is saved.
Alternative:
Step 1. They choose the wrong section, and have to return to the home page.
Step 2. They choose a different addition section, such as customer, and will have to return to the
add page.
Step 3,4. They forget to hit submit, and will have to reenter the information.

15

Use Case: Display a list of all jobs with their information (3.d)
Actor(s): Receptionist, Manager
Goal: A list of all jobs, and their completion status, is displayed on the screen.

Overview: The Receptionist or Manager goes to the ‘jobs’ section. They choose the ‘display all’
link, and a list of all jobs with their completion status is displayed.

Typical Course of Events:
Actor Action System Response
1. The Receptionist or Manger goes to the ‘jobs’ section
2. They then select the ‘display all’ link.
3. The system displays a list of
all jobs with their completion status.

Alternative:
Step 1. They choose the wrong section, and have to return to the home page.
Step 2. They choose the wrong link, and must return to the employee section.

16

High Level Sequence Diagrams

This is the High-level Sequence Diagram for Requirement 1a) Add a new customer

Receptionist

1l login

3:Goesto the section

o' o v o
{é ________________________
|
|
|
i Logs of
:<— ———————— Shutsdown person's account
|
I

17

This is the High-level Sequence Diagram for Requirement 1e) Display/print information about
an existing customer based on his/her id or name

L]
w m Display Kpstamer
WELETE | B Panel
Receptionist [ne '
| I 1
| : I -
| i LDgIn :
| |
e e 2:Allows access — — — — — — — — — —
|
|
: 3: Goesto the section
|
|
|
i e e S e S = e Gives options
|
|
|
|
|
| < —————————————————————
|
|
|
[
|
et T e O S ——
|
|
! —— l ‘
i Logs off '
|
c——————-- Shutsdown person's account— — — — — — — —]

18

This is the High-level Sequence Diagram for Requirement 2a) Add a new employee

Receptionist i

1: Asks for access
e T e e S e 2: Allowsaccess —— —— —— —— —— — — — — — ‘
|
3: Goesto the "add" system '
e 4; Bringsup theadd forms~ — — — — — — — — — — — — —~ ‘

5: Goesto the add employee section

Fills out the form to add employee

19

This is the High-level Sequence Diagram for Requirement 2d) Display/print a list of all
employees with their information

Manager/
Receptionist

1 Goesto "employes" sectio

<,, PR — R — 1[3) GOESLhE B = == == == w= = - - —

~2. Select the "display all" link-

Ko o - 3. Displays alist of all employees and their infor — — — —

20

This is the High-level Sequence Diagram for Requirement 3a) Add a new job

Manager/
Receptionist

1. Goesto "add" section

e ————— 1(a). Goesthere~ — — = = = = — — —

2. Go to "add new job" sectio

- 2(a). Goestherg- — — — — — — — — —

3. Putin job info and hit "Submit™

e ——— -4 |Informationis saved — — — — — — — —

21

This is the High-level Sequence Diagram for Requirement 3d) Display/print a list of all jobs with
their completion status

Manager/
Receptionist

1. Goesto "jobs" sectiof

- 1(3). Goesthere— — — — — — — —

2. Select "display all" link

-

|
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
| << = —3. Displays alist of all jobs & completion status — -
I
|
I
|
I
|
I
|
I
|
|

22

CRC Cards
Note:

We did not use entity classes in our first iteration, so the only classes that were implemented
were boundary and controller classes that wrote directly to the appropriate text file. The
following CRC Cards are our Iteration 1 Controller classes.

Add Customer <Controller>

Responsibility Collaborator

-Add Customer to an
appropriate text file with
customer attributes like ID,
Address, and Name of
Customer.

Display Customers <Controller>

Responsibility Collaborator

-Display all customers that
were added to the text file by
the Add Customer Controller.

Add Employee <Controller>

Responsibility Collaborator

-Add employee to an
appropriate text file with
employee attributes like hours
for the week, ID, and pay
rate.

23

Display Employee <Controller>

Responsibility Collaborator

-Display all employees that
were added to the text file by
the Add Employee Controller.

Add Job <Controller>

Responsibility Collaborator

-Add Job to an appropriate
text file with job attributes
like ID, Date, and Description
of Job.

Display Job <Controller>

Responsibility Collaborator

-Display all jobs that were
added to the text file by the
Add Job Controller.

24

High-Level Analysis Class Diagram

At this point in Iteration 1, we did not develop a full analysis class diagram that included all
necessary boundaries, controllers, and entities. For a high-level class diagram modeling the fully

functioning system, covering all requirements, please see our Iteration 1 domain model.

Package Diagrams for Requirements

Because we did not have a complete analysis class diagram at this point in Iteration 1, we could
not organize all of our classes in package form. For a package diagram covering all of the

requirements from lteration 1, please see our Iteration 1 design package diagram.

25

Design

Detailed Design Class Diagram

Our detailed class diagram for Iteration 1 is two-layered. The first layer is composed of our
boundary classes, each of which has links to the corresponding forms. The bottom-most layer of
boundaries has buttons which trigger the controllers. Notice the separate controller classes used
for each individual function, as we consolidate these in future iterations. For a closer look at this

diagram, please see our Wiki.

LoginForm1 <Boundary>

-btnOk_Click()
-btnCancel_Click()

1

Home <Boundary>

-InkAdd_LinkClicked()
-InkCustomer_LinkClicked()
-InkEmployees_LinkClicked()
-InkJobs, L‘kaIicked(]

1

addUlisEotindanyz CustomerU| <Boundary> EmpUI <Boundary> JobsUI <Boundary>

-InkAddCustomer_LinkClicked()
-InkAddEmployee_LinkClicked()
—\nkAdeobfLinkfiHcked()

-InkHome_LinkClicked() -InkHome_LinkClicked() -InkHome_LinkClicked()
-btnDisplay_Clicked() -btnDisplay_Clicked() -btnDisplay_Clicked()

ist < > EmplList <Boundary> JobList <Boundary>
AddCustomer <Boundary> AddEmployee <Boundary> Addlob <Boundary> CustomerList <Boundary:

.) L) o) -objCusController: DisplayCustomers -objEmpController: DisplayEmployee -objlobController: DisplayJob
EoJlAdCel s acd Chstomel DhJAddETp'éddEmp‘DyEE DbJAddmbb'C?mm”er -btnDisplayLastSix_Clicked() -btnDisplayLastThree_Clicked() -btnDisplayLastiob_Clicked()
-btnSubmit_Clicked() L ulaii_di) slmnaubmiticlicked() “btnDisplayNextSix_Clicked() -btnDisplayNextThree_Clicked() -btnDisplayNextlob_Clicked()

1 1 1 1 1 1

DisplayEmployee <Controller> DisplayJob <Controller>

AddCustomer <Controller> AddEmployee <Controller> Addlob <Controller> DisplayCustomers <Controller>

TAddCust() TAddEmB() TAddiob() +DisplayCustomers() +DisplayEmployees() +DisplayJobs()

26

Detailed Interaction Diagrams

This is a detailed sequence diagram for 1a) Add a new customer

| I 1 |
| |

|

Llogsin |

|

:Checks and Retuns |
|

:———-Show (—»
' |

I
|
|
|
I
|
|
I
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

btnAddCustomer_Click-

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
btnSubmit_Click :
|

AddCust

Adds Customer

— -Adds Customer — —

— — -Adds Customer — — —

— — — —Close{}- — — —

27

This is a detailed sequence diagram for 1e) Display/print information about an existing customer
based on his/her id or name

| | |
| |

logs inA‘

Checksand Retuns

InkHom

I
I
|
I
|

btnCustomer_Click

28

btnDisplayCust_Click

& — =Displays in IstCustlist— —

DisplayCust

This is a detailed sequence diagram for 2a) Add a new employee

m ‘AddEmployeeUl :Employeecontm"er
] I I
| |

1]])
) | | | | |
logsin | | | I |
| | I I I
“Checks and Retuns/ | | \ | |
I I | I I I
—Show(l— I | I |
! | | I I I
| | I |}
I z | I I |
| btnEmployees_Click- \ \ 1
I I I |
T dE | I [
|) | | |
| btnAddEmployee Click- | |
! Typesin info in txtbox ! !
T | |
I I |
T | I
i - [1
\ btnSubmit_Click: I
I |
\ AddE
I
I
I
I Adds Employee
I
I
I
| — -Adds Employes — —
I)
| — — -Adds Employee— — — i
I I |
I I I
I I !
I I I
I I |
I === Clsefj~—~—9 I 1
| L | | 1
I phordies 1 | I |
I | | I |
I —————CIOSE{)—————I | I |
- I I I 1
b 1 | I I
' | | | |
““““ Bitf=——————7 I I I I
I I | | | |
I | 1 | I I
I I I | | |
I | 1 | I I
I | | | | I
I I 1 | I I
I I I |

29

This is a detailed sequence diagram for 2d) Display/print information about an existing employee

| [
|) |

!

logs in :
uns :

I

btEmployees_Cli

btnDisplayEmps_Click-

DisplayEmp

& — ~Displays in IstEmplist— -

inkHomel

30

o)
o
o —
[<5]
[
3]
=)
<
<
o
—
(@)
—
S
1)
—
(@)]
8
©
D
[&]
c
[«5]
>
o
[¢B]
w
e}
2
‘S
d—
D
o
©
L
L
<
-

1
ke
2
g
c
0
b
S
=
2
o
)
o
_
E
8
'
£
¥
-~
B
8
£
o
o
o
€

Add)

Adds Job

|
I
]
0
3
4
Q
<
I
I
|

btnSubmit_Click

— — — —Adds Job — — — —

Typesin info in txtbox

w
5
i
c @
% '
waa
8
2
[}

198 S E—

btnExi

e R e

31

This is a detailed sequence diagram for 3d) Display/print a list of all jobs with their completion
status

| [
| |

btnDisplayJo!

] | |

; | | |

Logs in i | |
| | |

Checks and Retuns i I |
| 1 | |

| | |

btnobs [|

| |

|

|

|

|

btnDisplaylob_Click

Displayjob

- =Displays in IstJobslist— —

InkHom

32

Overall Design for GUI

This is where a user logins in

Home Menu

This is where a user navigates the system

Customer Employees

33

Add Page

A user would go here to add anything

Home

Add Customer

Add Employee

Add Job

Add Customer Page

This is the form where you add a customer

Name:

Address:
Phone Number:

Customer Type:

Submit

34

Add Employee Page

This is the form where a user adds an employee

Name: 1
ID: L]
Address: [
Schedule: s
ML]
L
wo []
™o
A
se []
Pay-rate:]
Add Job Page

This is the form where a user adds a job

Submit Clear

35

Customer Page

This is where a user would display the customers

Home

Display a List of Customers

Customer List Page

This is the page where the customers are displayed

Home

Display Customers

36

Employee Page

This is the page where the employee would go to see all the employees

Display all Employees

Employee List Page

This is the page where the employees are displayed

Home

st Emp List

37

Jobs Page

This is the page where a user would find the jobs to display

al] Jobs = -C- S|
Home
Display a list of all Jobs
Jobs List Page
This is the page where the jobs are displayed
o Jobs List [=[@ =]
Home
IstJobList
Display the Jobs

38

Package Diagrams for Design Organization

The package diagram below shows how our classes were organized (i.e. by class type). The top
folder contains all of our boundary classes, which points to the second layer of controller classes.
This boundary to controller relationship was all that we implemented in Iteration 1, and the
packaging reflects that. For a closer look at this diagram, please check Iteration 1 package

diagram on our Google Drive

Just the Job

Boundaries

LoginForm1 <Boundary> Home <Boundary>
CustomerUI <Boundary> EmpUI <Boundary> JobsUI <Boundary> AddUl <Boundary>

AddCustomer <Boundary> AddEmployee <Boundary> AddJob <Boundary>
CustomerlList <Boundary> EmplList <Boundary> JobList <Boundary>

Controllers

AddCustomer <Controller> AddEmployee <Controller> AddJob <Controller>

DisplayCustomers <Controller> DisplayEmployee <Controller> DisplayJob <Controller>

39

Implementation

Tested Code

We do not have our tested code from this iteration because we used the same Visual Basic file,
overwriting the old code with our updated code. It is important to note that in this iteration, we
did not implement entity classes. Entity classes were not needed because our lists held all of the
information associated with each class. In general, our code was modeled in parallel with our
design package diagram and design class diagram from this iteration, both of which were

previously listed.

Package Diagrams for Code Organization

Our package diagram for Code Organization is identical to our design package diagram. See

Iteration 1 design package diagram.

40

Payment <Class>

Amount
Customer

Manager <Class>

Name

Chapter 2: Project Iteration 2

Analysis

Analysis Domain Model

Our analysis domain model for Iteration 2 was very similar to our model from Iteration 1. There
were not many changes needed because we still had a good plan for how our classes were going
to interact. One modification we did make was an addition of a Manager class. Although we did
not implement the Manager as a class in our final code, we still added the Manager class to the

model for design purposes.

*
Invoice <Class> L. Job <Class>

Jobs Performed 1 Description
1 Amount Owed Employees involved
Location
1.*

1

1 Customer <Class> Employee <Class>

Name
Name

PayRate
Ll Hour Shifts

Date

Time
0.* Description

41

Requirements

Use-Case Diagram

Note: In iteration 2, we improved our use-case diagram greatly by adding the generalization for
our two actors. This reduced the amount of lines and confusion of our diagram as the manager
does everything the receptionist can do and more. Also, we updated our completed use cases to
match our progress so far in the project and correlates directly with the software. The last update
to this use-case diagram is the addition of the back end of writing to a text file. In our final use-
case diagram, the only update is the completion of all requirements. To view the diagram at

closer look, refer to our wiki page on Moodle.

42

Add customer

JE—
<cententor - _ _
Modify customer info,

= cconend>,

ps—

Display customer info

Display customer list
Manage Customers

(Manager only) 8

Delete customer

Manage Employee
(M&R)

== <cexendn

Add employe

<cextend>,

onends> Display employee info

Display employee list
Modify employee info,

Vianage Employee
(Manager only)

——

Delete employee

Add new job

anage jobs/appointment®
(M&R)
ejob

Display job info

anage jobs/appointment®
(Manager only)

BN Display pending job list

Modify job info
Receptioni SeLII

Manage customer invoices for one-time jobs

7" [Textfile

etz

<cextend>> T Cancel invoi
Manage customer invoices for all jobs — er =

(Manager Only)

Modify invoice

Manage customer invoices for regular job:

Display invoice

Display invoice list

Manage customer payment

ord Payment

anage customer payment®
(Manager only)

econend>.

— <contend>> T2

B ancel Payment

Maintain manager's personal weekly schedule

Save information — B Viodify Appointment

43

Use Case Scenarios

Use Case: Delete existing Customer (1.b)
Actor(s): Manager
Goal: Remove an existing customer from the database

Overview: The manager should be able to remove the data about an existing customer if it is no
longer needed.

Typical Course of Events:
Actor Action System Response
1. The manager logs into the system 2. The system checks the credentials
3. They then go to the Customer section
4. They then choose the delete customer link
5. They choose which customer to delete 6. The chosen customer is removed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Customer section; they will have to return to the home
page.

4. They choose a different link on the Customer page, they will have to return to the customer.
5. They chose an invalid customer to remove, and are notified that they have done so and will
then have to enter valid information.

44

Use Case: Modify information about an existing customer (1.c)
Actor(s): Receptionist, Manager
Goal: Edit the information stored about an existing customer

Overview: The manager/receptionist should be able to choose a customer, and then edit
information about them.

Typical Course of Events:
Actor Action System Response

1. They log in 2. The System checks their credentials

3. They then go to the Customer page

4. They then choose the modify customer option

5. They choose which customer to modify, and change

whatever information they want 6. These changes are saved to the
database.

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Customer section; they will have to return to the home

page.

4. They choose a different link on the Customer page, they will have to return to the customer.

5. They choose an invalid customer to modify, they will be notified. They will then have to

choose a correct customer.

45

Use Case: Display/print information about an existing customer based on his/her id or
name (1.d)

Actor(s): Receptionist, Manager

Goal: Display /print information about an existing customer using their id or name

Overview: After choosing a customer by entering their name or id, all of that specific customer’s
information should be displayed.

Typical Course of Events:
Actor Action System Response

1. Theylogin 2. Their credentials are validated.

3. They go to the customer page

4. They then go to the display page.

5. They choose the display individual option,

and enter a name or id. 6. The system displays the correct
customer.

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Customer section; they will have to return to the home

page.

4. They choose a different link on the Customer page, they will have to return to the customer

page.

5. They enter an invalid name or id, they will be prompted that they have done so. They should

then enter the correct information.

46

Use Case: Delete an existing employee (2.b)
Actor(s): Manager
Goal: Remove an existing employee from the database

Overview: The manager has the option to delete an employee from the database.

Typical Course of Events:
Actor Action System Response
1. Theylogin 2. Their credentials are validated.
3. They go to the employee page
4. They choose the delete employee option
5. They then choose the employee to delete
6. The system the removes that
employee from the database
Alternative courses:
1-2. They provide incorrect information and will have to reattempt
3. They go to a section different than the Employee section; they will have to return to the home
page.
4. They choose a different link on the Employee page, they will have to return to the employee
page.
5. They choose an invalid employee, they are prompted that they have done so. They then can
enter the correct information.

Use Case: Display print information about an existing employee (2.c)
Actor(s): Receptionist, Manager
Goal: Display the information about an existing employee

Overview: The manager/receptionist choose a specific employee, and the system displays their
information.

Typical Course of Events:

Actor Action System Response
1. They log in 2. Their credentials are validated
3. They go to the employee page
4. They choose the Display employees link
5. They choose the display individual option,
and indicate which employee they want

6. Their information is displayed

Alternative courses:
1-2. They provide incorrect information and will have to reattempt
3. They go to a section different than the Employee section; they will have to return to the home
page.
4. They choose a different link on the Employee page, they will have to return to the employee
page.
5. They choose an invalid employee, they are prompted that they have done so. They then can
enter the correct information.

47

Use Case: Delete/Cancel Job(3.b)
Actor(s): Manager
Goal: Delete a job form the database that has been cancelled.

Overview: The manager can choose a job to remove form the database.

Typical Course of Events:
Actor Action System Response
1. They log in 2. Their credentials are validated
3. They go to the Job page
4. They choose the delete job link
5. They choose a job they would like to be deleted 6. The job is removed from the database

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Job section; they will have to return to the home page.
4. They choose a different link on the Job page, they will have to return to the Job page.

5. They choose an invalid job, they are prompted that they have done so. They then can enter the
correct information.

Use Case: Print the status of a job (3.c)
Actor(s): Receptionist, Manager
Goal: Display the status of job

Overview: The Receptionist/Manager should be able to choose a job and see its completion
status.

Typical Course of Events:

Actor Action System Response
1. They log in 2. Their credentials are validated
3. They go to the Jobs page
4. They go to the Display Jobs page
5. They choose the individual option, and 6. The information is displayed.
then choose a job to display.

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Job section; they will have to return to the home page.
4. They choose a different link on the Job page, they will have to return to the Job page.

5. They choose an invalid job, they are prompted that they have done so. They then can enter the
correct information.

48

Use Case: Display/print a list of all completed jobs (3.e)
Actor(s): Receptionist, Manager
Goal: To display the list of completed jobs in the system

Overview: The receptionist/manager should be able to enter the system and display the list of all
completed jobs

Typical Course of Events:
Actor Action System Response
1. They login 2. Their credentials are validated
3. They go to the Jobs page
4. They go to the Display Jobs page
5. They choose to display jobs by completion 6. The completed jobs are displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Job section; they will have to return to the home page.
4. They choose a different link on the Job page, they will have to return to the Job page.

Use Case: Display/print a list of all pending jobs (3.f)
Actor(s): Receptionist, Manager
Goal: To display a list of all pending jobs in the system

Overview: The receptionist/manager should be able to enter the system and display a list of all
pending jobs

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated
3. They go to the Jobs page

4. They go to the Display Jobs page

5. They choose to display jobs by pending status 6. The pending jobs are displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Job section; they will have to return to the home page.
4. They choose a different link on the Job page, they will have to return to the Job page.

49

Use Case: Create a new invoice (4.a)
Actor(s): Receptionist, Manager
Goal: To create a new invoice and put it in the database

Overview: The receptionist/manager should be able to access the system and create a new
invoice.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They choose to create new invoice

5. All of the invoice information is entered

6. The invoice is saved 7. The invoice is entered into the system

Alternative courses:
1-2. They provide incorrect information and will have to reattempt.
3. They go to a section different than the Invoice section; they will have to return to the home

page.

Use Case: Cancel an existing invoice (4.b)
Actor(s): Manager
Goal: To cancel an existing invoice

Overview: The manager should be able to access the system and cancel an existing invoice in the
system.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated
3. They go to the Invoice page

4. They search for a specific invoice by ID

5. They choose to cancel the invoice 6. The invoice is cancelled

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home
page.

4. The wrong Invoice ID is entered. They can always search again.

50

Use Case: Modify an existing invoice (4.c)
Actor(s): Receptionist, Manager
Goal: To modify the info in a current invoice

Overview: The receptionist/manager should be able to access the system and modify the
information in an existing invoice.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They search for an invoice by ID

5. They choose to edit the invoice

6. They enter the new info and save 7. The invoice is re-entered into the system

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home
page.

4. The wrong Invoice ID is entered. They can always search again.

Use Case: Display/print an existing invoice (4.d)
Actor(s): Receptionist, Manager
Goal: To display an individual existing invoice

Overview: The receptionist/manager should be able to access the system and display or print an
existing invoice.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated
3. They go to the Invoice page

4. They search for an Invoice by ID

5. They choose to print/display Invoice 6. Invoice is displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home
page.

4. The wrong Invoice ID is entered. They can always search again.

51

Use Case: Display/print a list of all invoices and their payment status (4.e)
Actor(s): Receptionist, Manager
Goal: To display a list of all invoices, along with their payment status

Overview: The receptionist/manager should be able to access the system and display a full list of
invoices and their payment status

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated
3. They go to the Invoice page

4. They choose to display all invoices 5. All invoices are displayed

Alternative courses:
1-2. They provide incorrect information and will have to reattempt.
3. They go to a section different than the Invoice section; they will have to return to the home

page.

52

High-Level Sequence Diagram

This is the High-level Sequence Diagram for Requirement 1b) Delete an existing customer

En o

1
|) |
logs in >

|

|

|

|

— — -Checksand Retuns— — — — |
| |

| |

|

I
Clicks Customer Section P

: :——Goesto Customer—P> :Customer

]
[
|

———————————— ——-Diplays@ustomers — ~J_ o _ ___ ___ |
| | i,
I | ’
| | :
+ Clicks Delete Customer. | :
| | "

———————————— o —— -AskswhichCustomer— — J . _ _ _ _ _ __ |
| | i
l ' -
| | '
+————Chooses A Customer l :
| | "
[' :
| | '
I | :
' | Deletsthg Customer
u ‘ ‘
| I '

S —————_—— Displays that the Customerisdeleted— — — — . _ _ _ _ _ _ _ —;

' '

— Exits Customer: l —}’
| | :
| Kh“‘.—_\———"“'-—-——‘
‘ | '

Logs out- > |
; |
___________ *.sl'u.ltsdcv«/n----—"““"““I

53

This is the High-level Sequence Diagram for Requirement 1c) Modify information stored about
an existing customer

:Receptionist

logs in

|

|

|

|

— — -Checksand Retuns— — — — |
| |

| |

|

|
Clicks Customer Section Ll

: :——-Goesto Customer—P> :Customer

t
|
|
| emn
|
|

———————————— < —— —DisplaysCustomers — —~ J_ _ _ _ _ _ _ _ _ _
| | .
| | :
| | '
+ Clicks modify Customer. | '
| | i
———————————— o — — -AskswhichCustomer— — J . _ _ _ _ _ _ '
| | 0
[‘ '
| | :
t———Chooses A Customer l 1
| | -
Modifys appropriate things—| l
fysapprop ng | —P
|
|
|
|

= | Exits Customer: 1 » J
| |
|

1
Logs out

s

1
——————————— Shutsdown-— — — — — — —— —— —

54

This is the High-level Sequence Diagram for 1d) Display/print information about an existing
customer based on his/her id or name

:Receptionist

logs in

|

|

|

|

— — -Checksand Retuns— — — — |
| |

| |

|

I
Clicks Customer Section Ll

: :——-Goesto Customer—P> :Customer

I
I
I
———————————— - —— —DisplaysCustomers — — J_ _ _ _ _ _ __ _ _ |
| | R
| | ’
| | '
: Click Display Customer. | :
| | ™
———————————— o —— -AskswhichCustomer— — J . _ _ _ _ _ |
| | i
| ' -
| | '
+————Chooses A Customer l :
| | i
u ' '
| | '
l ' i '
' | Displays Customer
[' '4—J
| | '
S —m————— 1 Displays that the specificCustomerd — — — — . _ _ _ —;
' |
T Exits Customer: : —’:
| K—“—_.‘———‘““‘————_l
‘ | '
LogspuL 'I |
: I
___________ sru.usdcwn-———-"““"‘“l

55

This is the High-level Sequence Diagram for 2b) Delete an existing employee

] I
| . |
Logs in
Checksand Retuns .

inkHomeEMP-

loyee :DeleteEmp
I

btnDeleteEmployee
[DeleteEmp————P—Diplays Message

btnSearch : :
ShowsMessage Box- — —: ————————————— : ——————————

|

Clicks OK : T

| |

| |

| |

| |

btnCancel : :
_________ '——-——-—Close()--——-———'—-——-——-————-

56

Closes Box

This is the High-level Sequence Diagram for 2c) Display/print information about an existing
employee

m :EmployeeController :Employee :DisplayEmp
: :] | |
Logs in:

Checksand Retuns.

1
|
|
|
|
|
|
|
|
|

- Close() = —

57

This is the High-level Sequence Diagram for 3b) Delete/cancel an existing job

En o e

|
|
logs in >

|

|

|

|

— — -Checksand Retuns— — — — |
| |

| |

|

|
Clicks Customer Section »
|
' |___Goes:ombs-—>
| | '
| | '
| | :
———————————— A————Displaysdob- ~ -~ J— . _ ________ |
| | i
I | '
I | :
B —Clicks Job— 1 \
| | ™
———————————— o ——=-Askswhichlob — — J _ _ _ __ ___ ___ |
| | i
| | '
| | :
+ ~——-Chooses A Job— | :
| | "
[| '
' |
|}
: : Deletes the Job
[| '
| | '
———————————— —1 —Displaysthatthe Jobisdeleted 4 — — — _ _ _ _ _ _ _ _ ——-—:
, |
+ Exits Job- : —y'
| | :
| K_‘--“———‘“‘————_l
‘ | '
Logsput ’I |
: |
___________ Shutsdown-———-————_——' ?

58

This is the High-level Sequence Diagram for 3c) Display/print the status of a specific job

En o e

|
|
logs in >

|

|

|

|

— — -Checksand Retuns— — — — |
| |

| |

|

|
Clicks Customer Section »
|
| '__—Goestolobs*""
| | -
l ' '
| | :
———————————— A== =—pisplaysdots == oo
| | R
I | '
| | :
B ——Clicks Display Job- 1 \
| | ™
———————————— = —=-Askswhichlobe — — J_ _ _ _ __ ___ ___ |
| | i
| | :
| | :
+ ~—Chooses A Job— | :
| | i
[| '
| | ' |
| | isplay.
| | Display theJob
[' '<—J
| | '
———————————— == —-Displaystheldob— — — 4 — - _ __ _ _ __ __ _ |
| | B
+ Exits Job- ! —
| | :
| K_‘--“————"————_l
' | '
Logs out > |
: |
___________ Slwtsdowﬂ'—-—-_-___-_'

59

This is the High-level Sequence Diagram for 3e) Display/print a list of all completed jobs

| |
| : |
Llogs in P

|

— — -Checksand Retuns— — — —
|

|

I
Clicks Customer Section gl
: l[__-—Goes to Jobs—P>
| |
i |
| |
————————————— A—=———Digplaysob - — - J_ _ . _ _ ___ ___ _ _

|
|
4

“+—Clicks Display All Completed Jobs.l

|

|

|
4
|

|

|
N
|

|

|

|

|

)
Display All Completad Jobs

o S b —| — DisplaystheCompletedJobs- - — — — _ _ _ _ _ __ |
| | |
t Exits Job ! |
| |<_ .|
| BEpas s q s S S
| | |
Logs out > I
! |
———————————— i s s

60

This is the High-level Sequence Diagram for 3f) Display/print a list of all pending jobs

e e e

[|

: | |

Logs in ’l |

| |

— — —Checksand Retuns— — — — |
| |

| |

|

|
Clicks Customer Section g
: l[_——-—GOEStOJDtS"‘_—'
| | '
I | l
| | '
———————————— Homa—pgpmEebh ~=Jd oo)

|
I
|
+—Clicks Display All Pending Jobs—l

Exits Job

61

This is the High-level Sequence Diagram for 4a) Create a new invoice
T
s N s

| |
| . I
1. User >

——————— 2 Confimslog-in— — — — — — —

————— 3. Accessto main form isgiven- — — — —

A 4

1
4. Click Invoice secti

5. Goesto Invoice Fo

— — =6, Invoiceformdisplayed = = = = = = — ik = = = — —————————— -

7. Click to add new Invoice-

I
I
I
I
|
I
|
I
I
I
I
I
|
I
|
|
|

9. Submitsinvoiceto datab:
— =10. Returnsto InvoiceForm- —

|
I
|
|
|
|
|
|

|
= = = 11. Return to MainForm — — — =

I
|
|
|
|
T
|,
18- Fill out new Invoice form and submi
|
|
|
I
I
|
|

~~~~~~~~~~~~~~~~~ 12.Exitapp|‘rcation—-—~—-—~—-—-~--—‘-~—']
|

|
|
|
| |
| |
| |

62



This is the High-level Sequence Diagram for 4b) Cancel an existing invoice

o
[]

|
|
1 User logs-i »
~~~~~~~ 2 Confimnslog-in— — — — — — —
3. Accessto main form isgiven — — — —

I
4. Click Invoice secti

5. Goesto Invoice Fo

- = =G, Invoiceform displayed — — — = — — — Mk — — — = — — o ———— -

|
I
|
|
|
|
|
|
|
I
|
|
~ " |
7. Click to cancel an Invoic: |
|
|

8. Search for Invoice and cancel i

|
9. Update Inwice in dambase—]
— -10. Returnsto InvoiceForm— —

|
|
|
|
|
T
|
T
|
|
|
|
|
|

|
—————————————————— 12_ Exitapplication— — — — ———— ————————— 5

|
|
|
B
o
B
g
3
5
-
g
5
2
g
3
|
|
|
e ' e e

63

This is the High-level Sequence Diagram for 4c) Modify an existing invoice
s [cicrom

I
|

I 1 |

2 I | |

1. User log: » " |

m ! |

ﬂﬂﬂﬂﬂ 2. Confirmslog-in— — — — — — — | |
! |

————— 3. Accessto main fom isgiven- — — — — i |
| \ |

4. Click Invoice secti| > |

|

5. Goesto Invoics Fo

B = RS e S S S e e

7. Click to modify an Invoice

|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
8. Search for Invoice and modify i |
|

9. Update Inwoice in data.

- =10. Returnsto InvoiceForm— —

|
|
|
1
|
T
|
T
|
|
|
I
|

| — — — 11. Return to MainForm — — —

|
—————————————————— 12. Exit application— — — — — — — — — — — — — — — — —
|

|
1
|
|
|
|
|
|

|
|
|

64

This is the High-level Sequence Diagram for 4d) Display/print an existing invoice

®
e R -

1. User logs-i »

——————— 2. Confimslog-in— — — — — — —

————— 3. Accessto main form isgiven- — — — —

|
4. Click Invoice secti >
5. Goesto Invoice Fol

------------------------------ 6. Invoiceform displayed — — — — — — — e e e e e e e ——————

7. Click to display an Invoics

)
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1

8. Search for Invoice and choose to display i \

|

3. Invoice lookup in database———

|
|
|
| - =10. Returns and displays Invoiceinfo— —
I

|
— — — 11. Return to MainForm — — —)

|
—————————————————— 12 Exitapplication— — — — — — — — — — — — — — — — —
|

|

|

| |

| I I
| | |
| | |

65

This is the High-level Sequence Diagram for 4e) Display/print a list of all invoices and their
payment status

L J
e S o

1. User logs-i >
——————— 2. Confimslog-in— — — — — — —
————— 3. Accessto main form isgivens — — — —

|
4. Click Invoice secti

=~ = =B Invoiceform displayed — — = — = — -~

7. Click to display an Invoice list

]
I
|
I
|
1
|
1
|
1
|
1
|
1
)
|
|
|

S. Invoice lookup in database——

- =10. Returns and displays Invoice list — —

|

|

|

|

|

I

|

T 8. Chooseto display lisf
|

|

|

|

|

\ — — — 11.Return to MainForm — — — =
1

]
|
|

? 2 | |

—————————————————— 12.Exit application— — — — — — — — — — — — — — — — — | | |

| | |
| | |
| | |
| | |

66

CRC Cards

Note:

In this iteration, we developed our back end of our software by including our entities, so that we
could write objects to the text files and add objects to list boxes. Also, we redesigned our

controller classes to more generic controllers with more functions for a single entity.

Customer <Entity>

Responsibility Collaborator

Provide Customer Info
(Name, Phone, Address, Repeat,

ID)
Job <Entity>
Responsibility Collaborator
Store job info Employee
(When, Where, ID, Employees
Assigned)

Invoice <Entity>

Responsibility Collaborator

Store invoice info like customer | Customer, Job
ID, Job ID, and whether it is paid
or not

Employee <Entity>

Responsibility Collaborator

Provide information about
employee

67

CustomerController <Controller>

Responsibility Collaborator
Add Customer Customer
Load Customer Customer
Check ID if exists Customer
Modify Customer Customer
Delete Customer Customer
Display Customer Customer

EmployeeController <Controller>

Responsibility Collaborator
Add Employee Customer, Employee
Load Employee Employee
Check ID if exists Customer, Employee
Modify Employee Customer, Employee
Delete Employee Employee
Display Employee Employee

68

InvoiceController <Controller>

Responsibility

Collaborator

-Add Invoice

-Load Invoice

-Edit Invoices when modifying or adding
Jobs

-Check to see if IDs exist and get IDs
-Apply Payments to Invoices

-Delete Invoice

-Display Invoices As All or One

-Create Invoice ID

Customer, Job, Invoice
Job
Job, Invoice

Customer, Job, Invoice
Customer, Invoice, Job
Invoice
Invoice
Invoice

JobController <Controller>

Responsibility Collaborator
-Add Job Customer, Employee, Job, Invoice
-Load Jobs Job
-Check to see if ID exists for customer and Customer, Employee
employee
-Modify Job Customer, Employee, Job, Invoice
-Delete Job Job

-Display All Jobs, a Job, or jobs in a week
-check to see what invoices are worked on
for the week

Job

Job, Invoice

69

High-Level Analysis Class Diagram

At this point in Iteration 2, we did not develop a full analysis class diagram that included all
necessary boundaries, controllers, and entities. However, our detailed class diagram (shown on
the next page) for this iteration does show all necessary boundaries, controllers, and entities up to

this point.

Package Diagrams for Requirements

Because we did not have a complete analysis class diagram at this point in Iteration 1, we could
not organize all of our classes in package form. For a package diagram covering all of the

requirements from Iteration 2, please see our Iteration 2 design package diagram.

70

Design

Detailed Design Class Diagram

Our detailed class diagram for Iteration 2 is broken up over the next 5 pages. For a complete look
at our full class diagram, please refer to our Wiki. The first class posted is our Display and Save

system class. This class is instantiated throughout our controllers, as information is displayed and
saved automatically in a majority of our List Boxes. Our outer boundaries are the first few forms
that the user encounters, and much GUI design went into those forms. From there, the diagram is

broken down by entity class, showing all three layers of the architecture.

System Class

DisplayandSave <System>

+SubmitCust()
+DisplayCust()
+LoadCust()
+deleteCust()
+SubmitEmp()
+DisplayEmp()
+LoadEmp()
+deleteEmp()
+SubmitJob()
+DisplayJob()
+LoadJob()
+Deletelob()
+Submitlnvoice()
+Displaylnvoice()
+LoadInvoice()
+Deletelnvoice()

71

Outer Boundaries

LoginForm1 <Boundary>

-OK_Click()
-Cancel_Click()

HomeUl <Boundary>

-btnExit_Click()
-btnCustomer_Click()
-btnEmployees_Click()
-btnJobs_Click()
-btninvoice_Click()

1

CustomerUIl <Boundary> EmpUI <Boundary> JobsUI <Boundary>

InvoiceUl <Boundary>

-objlobController: JobController

-objCustController : CustomerController -objEmpController: EmployeeController . -objlnvController: InvoiceController
-objEmpController: EmployeeController = -
-Customer_Léad()» -EmpUI_Load())) -objCustController: CustomerController -InkH.omeI_LlnkChcked()
-InkHomeC_LinkClicked() -InkHomeEMP_LinkClicked() _objinvoiceController: InvoiceController -InvoiceUl_Load()
-btnAddCustomer_Click() -btnAddEmp_Click() e T kCheked -btnAddInvoice_Click()
-btnDisplayCust_Click() -btnDisplayEmps_Click() _an Sznf _dm fatedl] -btnDeletelnvoice_Click()
-btnModify_Click() -btnModifyEmployee_Click() -/0bstl_toa (), -btnModifyinvoice_Click()
: . -btnAddJob_Click() . S
-btnDelete_Click() -btnDeleteEmployee_Click() btnDisplaylob, Click() -btnDisplayAll_Click()
-btnDisplayOne_Click() -btnDisplayOne_Click() nispiay ob_tlic -btnDisplayPaidInvoices_Click()

-btnDeletelob_Click()
-btnModifyJob_Click()
-btnDisplayPendJobs_Click()
-btnDisplayCompJlobs_Click()
-btnDisplayS pecificlob_Click()

-btnDisplayUnpaidinvoices_Click()
-btnDisplayOne_Click()

72

Customer Classes

tomerU|l <Boundary>

-objCustController : CustomerController

-Customer_Load()
-InkHomeC_LinkClicked ()
-btnAddCustomer_Click()
-btnDisplayCust_Click()
-btnModify_Click()
-btnDelete_Click()
-btnDisplayOne_Click()

1

AddCustomerUl <Boundary> DisplayCust <Boundary> DeleteCust <Boundary> ModifyCust <Boundary>

-objAddCust: CustomerController
-AddCustomerUI_Load()

’ . -DisplayCust_Load() -DeleteCust_Load)() -ModifyCust_Load()
’:tnzll‘bm'tc—lql':k() -btnSearch_Click() —btnSearch:CIick() -btnSearch_Click()
-btnClear_Click() -btnCancel_Click() ~btnCancel_Click() -btnCancel_Click()

-btnCancel_Click()
1

ModifyAddCustomer <Boundary>

-objAddCust: CustomerController
+strDelete: String
-ModifyAddCustomer_Load()
+New()

-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

1

+Customers: List(Of Customer)
+AddCust()

+LoadCust()

+CheckExists()

+ModifyCust()

+DeleteCust()

+DisplayCust()

-custType: String
-custName: String
-custPhoneNumber: String
-custAddress: String
-custlD: String

+Get/Set custType
+Get/Set custName
+Get/Set custPhoneNumber
+Get/Set custAddress
+Get/Set custID

73

Employee Classes

EmpUI <Boundary>

-objEmpController: EmployeeController
-EmpUI_Load()
-InkHomeEMP_LinkClicked()
-btnAddEmp_Click()
-btnDisplayEmps_Click()
-btnModifyEmployee_Click()
-btnDeleteEmployee_Click()
-btnDisplayOne_Click()

1 1

AddEmployeeUl <Boundary>

DisplayEmp <Boundary>

DeleteEmp <Boundary>
-objAddEmp: EmployeeController

ModifyEmp <Boundary>

-AddEmployeeUl_Load()

-btnSubmitEmp_Click() -DisplayEmp_Loady() -DeleteCust_Load()
-btnClear_Click() -btnSea rch,CI}ck() -btnSea rchicl.lck()
-btnCancel_Click() -btnCancel_Click()

-btnCancel_Click()

-ModifyEmp_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddEmployee <Boundary>

-objAddEmp: EmployeeController
+strDelete: String

-ModifyAddEmployee_Load()
+New()
-btnSubmitEmp_Click()
-btnClear_Click()
-btnCancel_Click()

1

EmployeeController <Controller>

+Employees: List(Of Employee)
+AddEmp()

+LoadEmp()

+CheckExists()

+ModifyEmp()

+DeleteEmp()

+DisplayEmp()

Employee <Entity>

-empName: String
-empAddress: String
-empPayRate: String
-emplD: String
-schMon: String
-schTues: String
-schWed: String
-schThurs: String
-schFri: String
-schSat: String
-schSun: String
+Get/Set empName
+Get/Set empAddress
+Get/Set empPayRate
+Get/Set emplD
+Get/Set schMon
+Get/Set schTues
+Get/Set schWed
+Get/Set schThurs
+Get/Set schFri
+Get/Set schSat
+Get/Set schSun

74

Jobs Classes

obsUl <Boundary>

-objlobController: JobController
-objEmpController: EmployeeController
-objCustController: CustomerController
-objlnvoiceController: InvoiceController
-InkHomeJ_LinkClicked()
-JobsUI_Load()

-btnAddJob_Click()
-btnDisplayJob_Click()
-btnDeleteJob_Click()
-btnModifyJob_Click()
-btnDisplayPendlobs_Click()
-btnDisplayComplobs_Click()
-btnDisplaySpecificlob_Click()

B 1 1 1 1
< > H ifil - . .
AddJobUI <Boundary: DisplaySpecificlob <Boundary> Deletelob <Boundary> ModifylobUl <Boundary> DisplayCompletediobsuUl DisplayPendinglobsUl <Boundary>
-obj : <Boundary>
szl:\]dij::ji JO:CDHUOHGI' i -objlobControl: JobController
“bunsubmition, gick() Jrs et -Deletelob_Load() -ModifylobUI_Load() objlobControl: JobController “Displaypendinglobsul_ Loa()
-btnClear_Ciick() ﬁmtsieam:igll'm:() “binSearch_Click() s click) -DisplayCompletedJobs_Load() -btnClose_Click()
“btnCancel_Click() Lz LA “btnCancel_Click() “btnCancel_Click() T @
1 1
1 1 1

ModifyAddJob <Boundary>

-objAddJobs: JobController
+strDelete: String

+strlD: String
-ModifyAddJob_Load()
+New()

-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

1

JobController <Controller>

+lobs: List(Of Job)
+AddJob()
+LoadJob()
+CheckExists()
+Modifylob()
+Deletelob()
+DisplayJobs()
+Displaylob()

-jobLocation: String
-jobDescription: String
-joblD: String
-jobStatus: String
-empOne: String
-empTwo: String
-empThree: String
-CustID: String
+Get/Set jobLocation
+Get/Set jobDescription
+Get/Set jobID
+Get/Set jobStatus
+Get/Set empOne
+Get/SetempTwo
+Get/Set empThree
+Get/Set CustiD

75

Invoice Classes

InvoiceUl <Boundary>

-objlnvController: InvoiceController
-InkHomel_LinkClicked ()
-InvoiceUl_Load()
-btnAddInvoice_Click()
-btnDeletelnvoice_Click()
-btnModifyInvoice_Click()
-btnDisplayAll_Click()
-btnDisplayPaidInvoices_Click()
-btnDisplayUnpaidinvoices_Click()
-btnDisplayOne_Click()

1

AddinvoiceUl <Boundary>

-objAddInvoice: InvoiceController

-AddInvoiceUl_Load()
-btnSubmitInvoice_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayOne <Boundary>

-objlnvoiceController: InvoiceController

Deletelnvoice <Boundary> Modifylnvoice <Boundary>

-DisplayOne_Load()
-btnSearch_Click()
-btnCancel_Click()

Unpaidlnvoices <Boundary>

Paidinvoices <Boundary>

-objinvControl: InvoiceController -objinvControl: InvoiceController

-Deletelnvoice_Load()
-btnSearch_Click()
-btnCancel_Click()

-Modifylnvoice_Load()
-btnSearch_Click()
-btnCancel_Click()

1

ModifyAddinvoice <Boundary>

-objAddInv: InvoiceController
+strinvID: String

-ModifyAddInvoice_Load()
+New()
-btnSubmitInvoice_Click()
-btnClear_Click()
-btnCancel_Click()

1

-Unpaidinvoices_Load()
-btnClose_Click()

-Paidlnvoices_Load()
-btnClose_Click()

roller <Controller>

InvoiceC

-Invoices: List(Of Invoice)

+AddInvoice()
+LoadInvoice()
+MakelD()
+DisplayOne()
+Displaylnvs()
+Modifylnvoice()
+CheckExists()
+Deletelnvoice()

-invoicelD: String
~jobID: String
-custlD: String
-paidStatus: Boolean
-amount: String
-Location: String
-Description: String

+Get/Set invoicelD
+Get/Set jobID
+Get/Set custID
+Get/Set paidStatus
+Get/Set amount
+Get/Set Location
+Get/Set Description

76

Interaction Diagrams

This is a detailed sequence diagram for 1b) Delete an existing customer

Ui
|]

I
. | |
Logs in— |
Checks and Retuns' :
| I
I |
Y I
T |
| |
| btnCustomer_Click:
|
———————— == — — — — Displays Qustomer — —il— — — — — — — — — —
|
|
|
|
|
. o
|
| btnDeleteEmployee_Cli
|
T bl
j I
T cbNam:
|
— Typesin info-
|
T ct
|
|
|
|
|
|
|
!
|
|
|
!
|
|
|
———————— |~ = ——————— —DisplaysMessage Box — — — — — — — O (e (o oy
|
T
|
| — = = Close(}- — — —
|
T EEl
|
| o — — ~Closef}~ — — — \
| |
| |
| I
| |
| I
| I
| I
| I
| htnexi |
I |
L
———————— Application Exit(}— — — — — — — — :
|
\

77

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

— — —Deletes Customer— — —

:DeleteCustomer :CustomerController

Deletes Customer

— — —Deletes Customer— — —

This is a detailed sequence diagram for 1c¢) Modify information about an existing customer

:CustomerController
1
|
|
1
|
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
|

i]
I
1
1
1
|

:ModifyAddCustomer

E
5
2
£ B
3
g
w
g B
L]
2

[i

|js
5
il
&

i
73
2
&

:btnCustomer_Click—

= = =)= — — — — Displays Qustomer —

lliﬂfyC
| — = = Close()- = — —

— — ~Modifies Customer- —

b}
5
E
3
2
5

 —

Typesin Info for C

|

|
T
|
T
I
I
|
T
|
T
I
I
I
1
I
I
|
1
I
I
I
1
I
1
I
1
I
1
|
T
I
1
I
1
I
1
|
T

— — — = = = — — Application.Exit()~

78

This is a detailed sequence diagram for 1d) Display/print information about an existing customer
based of his/her id or name

®

]]

I) I | |
Logsin :
Ched(sandRetms. :

|
|
|

[|
| | |
| |)
| I I
| | I

| | I I
I | | |
| ey | I |
T RO | | |
I | | I
| -btnCustomer_Click— | \ |
! : I | [

——————— - — — — — — Displays Qustomer — —i — — — — — — — — — — | |]
I | | I
I | | |
| | | I
I | | |
| I | I
T DisplayOne— | | |
| | | I
I btnDisplayCne_Click |]
| | I
T | |
| | |
T -cbNam: | [}
| = . | I
T Typesin info | |
I | |
T = | |
I | |
I btnSearch_Click- |
I |
| DisplayCusf
|
|
| !
| Displays Customer
|
|
I
| — — —Displays Customer— — —
|
I — — ~Displays Customer— — —
|

——————— ~ = — — — — — — Displays Message Box with Customer- — — — — —————————
|
T
I
I
|
I
|
I
I
I
I
I
I
I
I
|
|
T

79

This is a detailed sequence diagram for 2b) Delete an existing employee

®
|]
|

Logs in-
‘Checks and Retuns'

1
|
|
|
]
|
|
U

|
|
|
|
]
|
]
|
]
1

——————— = — —— —DisplaysEmployee—~ —il— = = — — — — - —
tnDeleteEmployee_Cli
<bll
biNam:
Typesin info-

|
T
I
I
|
T
I
1
I
I
I
1
I
I
I
I
[
T

‘Applicaﬁm.Exit[)

- = —=Closef}s = — —

80

~ — ~Deletes Employee- — —

DeletsE

— — —Deletes Employee- — —

Deletes Employee

This is a detailed sequence diagram for 2c) Display/print information about an existing employee
T
Logs in
ChecksandRetms.

I
I
I
I
I
I
I
I
I
|

&= = = == — —Displays Employge— —fill— o= — — — — o o-.on e

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

binDisplayCne_Click

Typesin inf
m

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

btnSearch_Cli

Displays Employes

— — —Displays Employee- — —

— — ~Displays Employee- — —

— = = Close{} = = —

81

This is a detailed sequence diagram for 3b) Delete/cancel an existing job

I I
| |
Logs in
‘Checksand Retuns.

:btnlobs_Click-——

Typesin infi

o

I
I
I
T
I
I
I
o
I
I
I
I
I
T
I
I
|
T
I
T
I
T
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
-
|
T
I
I
|
T
I
I
I
I
I
I
I
I
I
I
|
T

Application Exit()

= = = Closel}s = — —

82

btnSearch_Cli

— — — —Deletes Job— — — —

Delata)

— — — —Deletes Job— — — —

]
|
|
1
|
|
1
|
|
1
|
|
I
1
I
1
I
1
I
I
I
1
I
I
I
I
I
|
1
1
1
U

Deletes Job

This is a detailed sequence diagram for 3c) Display/print the status of a specific job

®
| ern Sl o e
d logsing'l i I

:btnobs_Click

|
|
|
|
|
|
I
|
1
|
I
|
I
|
I
|
I
]
I
|
]
|
I
|
I
|
I
]
|

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
btnSearch_Click- \
|

Displays Job

— — — Displays Job- — — —

~ — — -Displays Job — — — —

83

This is a detailed sequence diagram for 3e) Display a list of all completed jobs

Ui
] 1

i | H i

Logsm—' i

Checks and Retuns' :

|

I

|

————————————— Displays Jobs— — —Jll— — — — — — — — — —

I
I
I
I
|
I
I
I
|
|
|
I
|
I
|
I
|
btnDisplayComplob: :
|

1
l
|
|
|
|
|
|
|
|
I
|
I
|
1
|
I
|
|

tnDisplayComplobs_Click |

1
DisplayCompletedlobs_Load———,

DisplayJob:

isplays Completed Jobs

— —Displays Completed Jobs — —

— — — Displays Completzd Jobs— — — —

btnClose—

[~ —————— Application. Exit{}~ — — — — — — —

84

This is a detailed sequence diagram for 3f) Display a list of all pending jobs

I I
| |

Logs in-
“Checksand Retuns

)

-btnjobs_Click——|

Displays Jobs— — —Jll— — — — — — — —

jobs-

binDisplayPendJobs_Click

btnCose—

|
I
I
T
|
1
|
-
I
I
I
I
I
T
I
I
I
I
I
I
|
1
I
1
I
I
I
I
|
I
I
|
I
I
I
I
I
1
I
I
|
T
I
1
|
I
I
|
I
|
I
|
I
1
I
|
|
T

85

:JobController

— — — —Displays Pendinglobs- — — — —

v

DisplayJob:

— — -Displays Pendinglobs— — —

Displays Pending Jobs

This is a detailed sequence diagram for 4a) Create a new invoice

I]
| |

| I
. | |
logsin | |
| |
-Checks and Retuns | |
| | |
—Show(j—P, |
! | |
btninvoice |
| |
|
|
T btnAddinvoic
|
| btnAddinvoice_Cli
|
T Typesin
|
T btnS
|
I
|
I
I
I
|
I
|
I
|
I
|
I
I
——————— I_ _____ D@lavs _______
|
I
|
I — — Close(} — —
! 1 d
T kHomel \
' |
I |
: |
btnExit |
< |
““““ Baff =—=—===T |
I | |
| | |
I | |
| | |
| | |
| | |
| | |

86

1
J
|
I
|
|
|
I
|
|
!
|
|
1

btnSubmitinvoice_Click

— — -Addsinvoice — —

-Addinwoic

— Adds invoice- —

:InvoiceController fl :Invoice

Adds Invoice

This is a detailed sequence diagram for 4b) Cancel an existing invoice

| I
| |
Logs in:

| |
| |
| |
| |
-Checks and Retuns | |
| | |
——Show(}—, |
! | |
btninvoics |
| |
I
|
tn Deletelnvoic:
I
\ btnDeletelnvoice_Cli
|
T Types
|
I
I
I
|
I
|
I
|
I
|
I
|
I
|
I
I .
_______ I_____.D,splav ————————
|
I
I
I — — Close() — — —
! 1rik
T InkHomel
|
I |
'
htrEvi |
bnExit |
g |
"""" Bl =—====""N |
I | |
I | |
I | |
I | |
I | |
| | |
I | |

87

]
|
|
|
|
|
|
|
|
|
|
|
|
|

btnSearch_Click——

— — -Deletasinvoice: — —

Deletslnvoi

— Deletes invoice —

I
|
|
|
I
I
I
|
I
|
|
|
|
|
|
|
I
|
I
|
I
|

:InvoiceController m

eletes Invoice

ing invoice

isti

for 4c) Modify an ex

iagram

detailed sequence d

isisa

Th

Logs in
Checks and Retuns'

Modifies Invoice

—btSubmitinwice_Cli
'<— — = -Modifies Inwoice- — — —

:ModifyAddinvoice :InvoiceController m
odifylnvo
— — — Modifies Invoice— —
|
i
|
|
i
|
i

g e o o I L spmeaspem e ey

»
>
]
|

= = IO e —

lm Modifylnvoice_Ci

Infofor

VP

“btninvoice_Click

~ — — — — —Displays Invice- — |
Typesin ID-
b -—.

|

— = ~Closel}~ — — —

-

. I - - - - -~ -

— = = = = — — — Application. Exit(}~ — — — — — — —

88

This is a detailed sequence diagram for 4d) Display/print an existing invoice

| I
| . I
Logs in-
Checksand Retms.

——————— Displays Jobs-

]
I
I
I
I
I
I
|

:bininvoice_Click:

btnDisplayOs

Typesin ID-

btnCancel

I
I
I
T
I
I
I
2
I
I
I
I
I
T
I
I
I
I
I
I
|
T
|
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
T
|
T
I
I
|
T
I
I
I
I
I
I
I
I
I
I
|
I

IApplicatim.Exit()—

89

— — —Displays Invoice: — — —

Displays Invoice

- — — -Displays Invoice— — —

This is a detailed sequence diagram for 4e) Display a list of all invoices and their payment status

| |
| . I
Logs

Checks and

Returs-
|

|
|
I
|
I
|

90

btDis playAll_Click

- = =—|stinvoicesList — — -

Displaylnvoice

Overall Design for GUI

Login Page

This is where a user logs in

Home Page

This is where a user navigates to the various categories

Just the Job

91

Customers Page

This is where a user sees all the customers and performs various requirements to customers

-

a5 Customers (== =]

Home

Mame: Adam

ID: 343

Address: StL

Phone Number: 145621458
Customer Type: Repeat

| »

m

Mame: Phil

1D: 70

Address: The Road

Phone Number: 524156256 &

l Add a Customer] [Digplay All Customers]

[Maodify a Customers l [Delete a Customer]

[Display a Specific Customer]

Adds Customer Page

This is the form to add a customer

55 Add Customer [= (S
Name:
ID:
Address:

Phone Number:

Customer Type:

Submit | | Clear ‘ | Cancel

92

Modify Customer Search Page

This is where a user searches for the customer he wants to modify

o=/ Modify Customer

Search by 1D
[Search by Name

| Search | | Cancel

Modify a Customer Page

This is where the user modifies a customer’s info

- Modify Custorner ==
Name: [Adam]
ID: 343
Address: StL
Phone Number: 145621458
Customer Type: Repeat

93

][S

Delete Customer Search Page

This is where the user searches for the customer they want to delete

o

a5 Delete Customer @lﬂ“ﬁ

Search by ID
"] Search by Name

[Search] [Cancel

Display Customer Search Page

This is where a user searches for a specific customer to display

o5 Display Custormer |- E]

Search by ID
[] Search by Mame

| Search | | Cancel

94

Employee Page

This is where a user sees all the employees and performs various requirements to employees

' Employee []l-E]]

Home

MName: Max -
1D: MB125M
Address: OH |
Schedule:

’ Add an Employee] ’ Display Employees l

| Delete Employee | | Modiy Employes |

| Display A Employee |

Add Employee Page

This is where a user adds an employee

" 4 Add Employes =

Name:

ID:

Address:

Schedule: s
M:
T:
W:
TH:
F:
SA:

Pay-rate:

95

Delete Employee Search Page

This is where a user searches for an employee to delete

[

o= Delete Employee |- E S

] Search by ID
[] Search by Name

[Search] [Cancel

Modify Employee Search Page

This is where a user searches for an employee to delete

=/ Modify Employee |- E S|

] Search by ID
[7] Search by Name |

’ Search l ’ Cancel

96

Modify Employee Page

This is where a user modifies an employee’s info

a5 Modify Employee EIIEI

Name: =R
ID: MB125M
Address: OH
Schedule: s 0

M: 84

T: 84

W: 84

TH: 84

F: &4

SA: 0
Pay-rate: 25/

Display an Employee Search Page

This is where the user searches for an employee to display

"

o= Display Employee S|

Search by ID
] Search by Name

| Search | | Cancel

97

Jobs Page

This is where a user sees all the jobs and performs various requirements to jobs

as' Jobs [E=8(E= 5=
Home
stJobsList
Add a Job Digplay Jobs
Delete a Job Maodify a Job
[Display Completed Jobs] ’ Display Pending Jobs]
Display Specific Job

Add a Job Page

This is where a user adds a job

o Add Job =n =R

Location:

1D:
Status:

Customer 1D:

Description:

Employee 1 1D:
Employee 2 10:

Employee 3 1D:

98

Delete Job Search

This is where a user searches for a job to delete

a5 Delete Job

Search by 10:

’ Search] [Cancel

Display Completed Jobs Page

This is where a user looks at the completed jobs

all Display Completed Jobs | (=] “ﬂ“ﬂl

Location: Canada -
[0 580 =
Status: Completed

Customer 10: 879
Descrption: Clean Syrup spill
Employee 110 pdh
Employee 2 10 none
Employee 3 1D none

m

Location: Jally "0l England

ID: J345

Status: Completed

Customer [D:; 343

Description: God Save the Queen
Employee 110: pdh

Employee 2 ID: none &

Close

99

Pending Jobs Page

This is where a user looks at jobs not completed

P

o=l Display Pending Jobs

-

RN O EXS

Location: YUKI

ID:u

Status: Pending
Customer |D: 672
Description: u
Employee 1 10: pdh
Employee 2 1D: none
Employee 3 10 none

Location: Faibanks

IO 102

Status: Pending

Customer |D; 343
Description: Let's get it going
Employee 1 10: SG1785
Employee 2 10 none

m

Modify a Job Search Page

This is where a user goes to search for a job to modify

F

o= Modify Job

Search by 1D:

[Search]

L= O]

[Cancel

TIC. ST T L T 1T

100

Modify a Job Page

This is where a user modifies a job

o=l Modify Job
Location: FruK]

1D: u

CustomerlD: 672

Status: Pending

Description: u

Employee 110: pdh
Employee 2 1D:

Employee 3 1D:

Display a Specific Job Search Page

[E=N O =X

Cancel

This is where a user searches for a specific job to display

[

a- Display Specific Job

BN EOR (5

Search by 1D:

[Search]

[Cancel

101

Invoice Page

This is where a user sees all the invoices and performs various requirements to invoices

=) Invoices EI@

Home

Invoice 1D: INZ -
Job ID:u K|
Customer |D: 672 =
Amount: 25

Payment Status: Not Paid

Location: q

Description: g

Invoice 1D: N4
Job ID:u e

’ Add Invoice l ’ Display Invoices l

[Delete Invoice] [Modify Invoice]

’ Display Paid Invoices l ’ Display Unpaid Invoices l

[Display an Invoice l

Add an Invoice Page

This is where a user adds an invoice

05 Add Invoice EI@

Invoice 1D:
Job ID:

Customer 1D:

Amourt:

Paymenrt Status:

Location:

Description:

102

Delete an Invoice Search Page

This is where a user searches for an invoice to delete

o5 Delete Invoice @lﬂ“ﬂl

Search by 10

[Search] [Cancel

Display the Paid Invoices Page

This is where a user views the paid invoices

o' Paid Invoices EI@

Invoice |D: 67

Job (D 45

Customer 1D: 11
Amount: 50.00
Payment Status: Paid
Location: Butler
Description: None

Close

103

Modify an Invoice Search Page

This is where a user searches for an invoice to modify

=l Modify Invoice

=]l & e

Search by 1D:
Search] [Cancel
Modify an Invoice Page
This is where a user modifies an invoice
o' Modify Invoice EI@

Invoice 1D INZ
Job ID: J102
Customer ID: 343
Amount: 23

Paymert Status: Wnpaid

Location: [SET——

Description: Let's get it going

Cancel

104

Unpaid Invoices Page

This is where a user views the unpaid invoices

P

o= Unpaid Invoices

Imvoice 10: IN1

Job 1D J345

Customer ID: 343
Amount: 25

Payment Status: Unpaid
Location: Joly "0l England

Invoice 1D: N3

Job 1D g

Customer ID: 672
Amount: 25

Payment Status: Unpaid
Location: g

Description: g

Description: God Save the Queen

Display an Invoice Search Page

This is where a user searches for a specific invoice to display

L

- Display One Invoice

Search by 1D

[Search

=N [ROR(E5S

’ Cancel

105

Package Diagrams for Design Organization

Our package diagram for Iteration 2 contains four different folders, to organize the types of
classes that we implemented in the code. The layering of packages maps 100% to our class
diagram shown above. The first folder contains all of our boundary classes, as they are the forms
and GUIs the users are interacting with on the front-end. In the middle are our Controller and
System folders. These middle packages are where all of the logic takes place, whether it deals
with the lists of entities or the displaying and saving of files. The bottom package contains all of
our entity classes as they are the back-end classes, those that are written to and read from the text

files. Please see our diagram on the next page.

106

Just the Job

Boundaries

LoginForm1 <Boundary> HomeUl <Boundary>
CustomerUI <Boundary> EmpUI <Boundary> JobsUI <Boundary> InvoiceUl <Boundary>

AddCustomerUl <Boundary> DisplayCust <Boundary> DeleteCust <Boundary> ModifyCust <Boundary>
ModifyAddCustomer <Boundary> AddEmployeeUl <Boundary> DisplayEmp <Boundary> ModifyEmp <Boundary>
ModifyAddEmployee <Boundary> DeleteEmp <Boundary> AddJobUI <Boundary> DisplaySpecificlob <Boundary>

Deletelob <Boundary> ModifylobUI <Boundary> ModifyAddJob <Boundary> DisplayCompletedJobsUlI
<Boundary>
DisplayPendinglobsUI <Boundary> AddinvoiceUl <Boundary> DisplayOne <Boundary> Deletelnvoice <Boundary>
. : Paidinvoices <Bound Unpaidlnvoices <Boundary>
Modifylnvoice <Boundary> ModifyAddinvoice <Boundary> aidInvoices <Boundary>

—

EmployeeController <Controller> :
CustomerController <Controller> DisplayandSave <System>
JobController <Controller> InvoiceController <Controller>

Customer <Entity> Employee <Entity>

Job <Entity> Invoice <Entity>

107

Implementation

Tested Code

We do not have our tested code from this iteration because we used the same Visual Basic file,
overwriting the old code with our updated code. It is important to note that in this iteration, we
did implement entity classes. Our code took huge strides in this iteration, as we added new forms
to accommodate for the new functionality, consolidated our controllers, and created entities to
hold our attribute information. In general, our code was modeled in parallel with our design

package diagram above.

Package Diagrams for Implementation Organization

Because we do not have our tested code from this iteration, we do not have a package diagram
for our implemented code. At this point in Iteration 2 our design package diagram was mapped

100% to our code, so please refer to our design package diagram above.

108

Chapter 3: Project Iteration 3

Brief Description of Work

In Iteration 3 we were asked to design and implement requirements 5a-e, 6a-c, and 7a-d.
Requirement 5 is managing customer invoices for regular jobs, which means we had to modify
the job code slightly to accommodate for one-time and regular jobs. Requirement 6 is managing
customer payments, so we had to create new classes that allowed for the addition of payments.
These payments directly interact with invoices because once an invoice has received enough
payments, it is marked as paid. Requirement 7 is maintaining the manager’s personal weekly
schedule, so we had to implement that functionality through another entity class. The addition of
these classes was an easy transition to make, as we kept the same architecture of classes from
past iterations. The final requirement we handled in this iteration was differentiating between
manager and receptionist logins. In the first two iterations the receptionist could make deletions

throughout the system, and we wanted to disallow this.

109

Static Design Model

Final Class Diagram

Once we reached Iteration 3, our final class diagram took shape and we had a structure we were
pleased with. Only a few things changed in our class diagram from Iteration 2 to Iteration 3, one
being the addition of start and end date attributes to our Job class, and also the addition of
support classes for our new two entity classes, Payment and Appointment. There were also slight
modifications made in the System class, to accommodate for our new entities. To see our full

class diagram with all associations, please see our Wiki.

System Class

DisplayandSave <System>

+SubmitCust()
+DisplayCust()
+LoadCust()
+deleteCust()
+SubmitEmp()
+DisplayEmp()
+LoadEmp()
+deleteEmp()
+Submit)ob()
+DisplayJob()
+LoadJob()
+Deletelob()
+Submitinvoice()
+Displaylnvoice()
+LoadInvoice()
+Deletelnvoice()
+SubmitPayment()
+LoadPayments()
+DisplayPayments()
+DeletePayment()
+SubmitAppointment()
+LoadAppointments()
+DeleteAppointment()

110

Outer Boundaries

LoginForm1 <Boundary>

-strUser: String
-LoginForm1_Load()
-0K_click()
-Cancel_Click()
+Get/Set strUser

1

HomeUl <Boundary>

-HomeUl_Load()
-btnExit_Click()
-btnCustomer_Click()
-btnEmployees_Click()
-btnJobs_Click()
-btninvoice_Click()
-btnPayment_Click()
-btnScheduleManager_Click()

1

1 1 1 B 1
CustomerUI <Boundary> EmpUI <Boundary> JobsUI <Boundary> InvoiceUl <Boundary> PaymentUI <Boundary> ManagerU| <Boundary>

-objCustController : CustomerController -objEmpController: EmployeeController -objlobController: JobController -objinvController: InvoiceController _objinvoices: InvoiceController
-Customer_Load() -EmpUI_Load() -objEmpController: EmployeeController -InkHomel_LinkClicked() -objCustomers: CustomerController -ManagerUI_Load()
-InkHomeC_LinkClicked() -InkHomeEMP_LinkClicked() elfens el i @S EEEniEl) s i) -objPayments: PaymentController -InkHome_L_LinkClicked ()
-btnAddCustomer_Click() “btnAddEmp_Click() -objlnvoiceController: InvoiceController | _btnAddinvoice_Click() -objDisplay: DisplayandSave “btnAdd_Click()
-btnDisplayCust_Click() -btnDisplayEmps_Click() -InkHome_LinkClicked () -btnDeletelnvoice_Click() _PaymentU|_Load() -btnModify_Click()
-btnModify_Click() -btnModifyEmployee_Click() -JobsUI_Load() -btnModifylnvoice_Click() -InkHome_L_LinkClicked() -btnDelete_Click()
-btnDelete_Click() -btnDeleteEmployee_Click() -btnAddJob_Click() -btnDisplayAll_Click() -btnAddPay_Click() -btnPrint_Click()
-btnDisplayOne_Click() -btnDisplayOne_Click() -btnDisplayJob_Click() -btnDisplayPaidInvoices_Click() —b(nCred\'tiEIick()

-btnDeletelob_Click() -btnDisplayUnpaidinvoices_Click() -btnDisplay_Click()

-btnModifyJob_Click() -btnDisplayOne_Click() _btnCancel_Click()

-btnDisplayPendJobs_Click() -btnDisplayWeekly_Click()

-btnViewReceipt_Click()
-btnDisplayComplobs_Click()

-btnDisplaySpecificlob_Click()

111

Customer Classes

tomerUl <Boundary>

-objCustController : CustomerController
-Customer_Load()
-InkHomeC_LinkClicked()
-btnAddCustomer_Click()
-btnDisplayCust_Click()
-btnModify_Click()

-btnDelete_Click()
-btnDisplayOne_Click()

1

AddCustomerUl <Boundary> DisplayCust <Boundary> DeleteCust <Boundary> ModifyCust <Boundary>

-objAddCust: CustomerController

-/l::jdscubSto':ni:'UL_Load() -DisplayCust_Load() “DeleteCust Load() ModifyCust. Load(
-btncr mlc_r |I<c ! e EIE) -btnSearch_Click() -btnSearch_Click()
B RelCCeIRCIIER “btnCancel_Click() “btnCancel_Click()

-btnCancel_Click()
1

ModifyAddCustomer <Boundary>

-objAddCust: CustomerController
+strDelete: String
-ModifyAddCustomer_Load()
+New()

-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

1

CustomerController <Controller>

+Customers: List(Of Customer)
+AddCust()

+LoadCust()

+CheckExists()

+ModifyCust()

+DeleteCust()

+DisplayCust()

-custType: String
-custName: String
-custPhoneNumber: String
-custAddress: String

-custlD: String

+Get/Set custType
+Get/Set custName
+Get/Set custPhoneNumber
+Get/Set custAddress
+Get/Set custID

112

Employee Classes

EmpUl <Boundary>

-objEmpController: EmployeeController
-EmpUI_Load()
-InkHomeEMP_LinkClicked()
-btnAddEmp_Click()
-btnDisplayEmps_Click()
-btnModifyEmployee_Click()
-btnDeleteEmployee_Click()
-btnDisplayOne_Click()

1 1

AddEmployeeUl <Boundary> ModifyEmp <Boundary>

DisplayEmp <Boundary> DeleteEmp <Boundary>

-objAddEmp: EmployeeController
-AddEmployeeUl_Load()

N : -Di N -ModifyEmp_Load()
-btnSubmitEmp_Click() DlsplayEmp_Foad() DeleteCust_LfJad() -btnSearch_Click()
-btnClear_Click() -btnSearch_Click() -btnSearch_Click() ’ et

ol -btnCancel_Click() -btnCancel_Click() -btnCancel_Click()

-btnCancel_Click()

ModifyAddEmployee <Boundary>

-objAddEmp: EmployeeController
+strDelete: String
-ModifyAddEmployee_Load()
+New()

-btnSubmitEmp_Click()
-btnClear_Click()
-btnCancel_Click()

1

EmployeeController <Controller>

+Employees: List(Of Employee)
+AddEmp()

+LoadEmp()

+CheckExists()

+ModifyEmp()

+DeleteEmp()

+DisplayEmp()

Employee <Entity>

-empName: String
-empAddress: String
-empPayRate: String
-emplD: String
-schMon: String
-schTues: String
-schWed: String
-schThurs: String
-schFri: String
-schSat: String
-schSun: String

+Get/Set empName
+Get/Set empAddress
+Get/Set empPayRate
+Get/Set empID
+Get/Set schMon
+Get/Set schTues
+Get/Set schwed
+Get/Set schThurs
+Get/Set schFri
+Get/Set schSat
+Get/Set schSun

113

Jobs Classes

JobsUI <Boundary>

-objlobController: JobController
-objEmpController: EmployeeController
-objCustController: CustomerController
-objlnvoiceController: InvoiceController
-InkHomeJ_LinkClicked()
-JobsUI_Load()

-btnAddJob_Click()
-btnDisplayJob_Click()
-btnDeleteJob_Click()
-btnModifyJob_Click()
-btnDisplayPendJobs_Click()
-btnDisplayCompJobs_Click()
-btnDisplayS pecificlob_Click()

AddJobUI <Boundary> DisplaySpecificlob <Boundary>

DisplayPendinglobsUI <Boundary>

Deletelob <Boundary> ModifyJobUI <Boundary> DisplayCompleted)obsU1
<Boundary>

-objAddJobs: JobControll:
obj obs: JobController -objlobControl: JobController

-AddJobUI_Load N o
—btnSSbm'\t_J:ba (g\'ck() ~DisplaySpecificlob_Load() “Deletelob. Load() “ModifyJobUI_Load() e el “Displaypendinglobsul_Load()
“btnClear._Click() 'E‘"zea'c"‘—g'c:(' btnsearch_Click() “btnSearch_Click() G rediabe Lo “btnClose_Click()
-~ e i ') ' i
“btnCancel_Click() GaEl Gl) “btnCancel_Click() btnCancel_Click() i
B 1
1 1 1

ModifyAddJob <Boundary>

-objAddJobs: JobController
+strDelete: String

+strlD: String
-ModifyAddJob_Load()
+New()

-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

1

JobController <Controller>

+Jobs: List(Of Job)
+AddJob()
+LoadJob()
+CheckExists()
+Modifylob()
+Deletelob()
+Displaylobs()
+DisplayJob()
+JobsinWeek()
+InvoicesforWeek()
+JobListChecker()

1

~jobLocation: String
-jobDescription: String
-joblD: String
-jobStatus: String
-empOne: String
-empTwo: String
-empThree: String
-CustID: String
-NumWeeks: Integer
-startDate: Date
-endDate: Date
+Get/Set jobLocation
+Get/Set jobDescription
+Get/Set jobID
+Get/Set jobStatus
+Get/Set empOne
+Get/Set empTwo
+Get/Set empThree
+Get/Set CustiD
+Get/Set NumWeeks
+Get/Set startDate
+Get/Set endDate

114

Invoice Classes

InvoiceUl <Boundary>

-objlnvController: InvoiceController
~tnkHonret-tink€lickedt)

-InvoiceUl_Load()
-btnAddInvoice_Click()
-btnDeletelnvoice_Click()
-btnModifylnvoice_Click()
-btnDisplayAll_Click()
-btnDisplayPaidInvoices_Click()
-btnDisplayUnpaidinvoices_Click()
-btnDisplayOne_Click()
-btnDisplayWeekly, Click()

|

1 i | , 1 1
AddinvoiceUl <Boundary> DisplayOne <Boundary> Deletelnvoice <Boundary> Modifylnvoice <Boundary> Paidlnvoices <Boundary> Unpaidlnvoices <Boundary>
—o:jé:dlrxo:}ce;ln;/coiceco‘:\trol\er -objinvoiceController: InvoiceController ~objlnvControl: InvoiceController -objinvControl: InvoiceController
-obj : t = . et
S QO I “DisplayOne_Load() “Deletelnvoice_Load() Nodityimeice Load(“Paidinvoices_Load() ~Unpaidinvoices_Load|()
—:ddslméoweluuoadc(: 0 -btnSearch_Click() -btnSearch_Click() btnsearch_Click() -btnClose_Click() ~btnClose_Click()
-btnSubmitinvoice_Clicl i i =
- -btnCancel_Click() -btnCancel_Click() N i
“btnClear_Click() btnCancel_Click()
~btnCancel_Click() | 1 B 1
1
1
ModifyAddinvoice <Boundary>
-objAddInv: InvoiceController
-objChecklobs: JobController
+strinvID: String
-ModifyAddinvoice_Load|()
+New()
-btnSubmitinvoice_Click()
“btnClear_Click()
-btnCancel_Click()
1
1
InvoiceController <Controller>

“Invoices: List(Of Invoice)
+AddInvoice()
+Editinvoice()
+LoadInvoice()
+ApplyPayment ()
+MakelD()
+DisplayOne()
+Displaylnvs()
+Modifylnvoice()
+CheckExists()
+CheckCust()
+getCustID()
+Deletelnvoice()

-invoicelD: String
-custlD: String
-paidStatus: Boolean
-amount: Integer
-JobList: String
+Get/Set invoicelD
+Get/Set custID
+Get/Set paidStatus
+Get/Set amount
+Get/Set JoblList

115

Payment Classes

PaymentUI <Boundary>

-objlnvoices: InvoiceController
-objCustomers: CustomerController
-objPayments: PaymentController
-objDisplay: DisplayandSave
-PaymentU|_Load()
-InkHome_L_LinkClicked()
-btnAddPay_Click()
-btnCredit_Click()
-btnDisplay_Click()
-btnCancel_Click()
-btnViewReceipt_Click()

1

AddPayment <Boundary> ViewReceipt <Boundary>

CancelPayment <Boundary> CreditPay <Boundary>

-AddPayment_Load()

-ViewReceipt_Load()

q N : -CancelPayment_Load() N "
btnSearch_CI}ck() -btnSearch_Click() -btnSearch_Click() iregltpa{_;ol?dk()
-btnCancel_Click() _btnCancel_Click() -btnCanceI_CIick() -btnSearch_Click()

1 -btnCancel_Click()

1

AddPay <Boundary>

-objPayController: PaymentController
-AddPay_Load()

+New()

-btnSubmitPayment_Click()
-btnClear_Click()

-btnCancel_Click()

1

PaymentController <Controller>

+Payments: List(Of Payment)
-objlnvController: InvoiceController
+AddPay()

+LoadPay()

+CheckExists()

+CancelPay()

+CreditPay()

+displayAPayment()

Payment <Entity>

-amountPaid: Integer
-CustomerlD: String
-PaymentlD: String
+Get/Set amountPaid
+Get/Set CustomerID
+Get/Set PaymentID

116

Manager Classes

ManagerUl <Boundary>

-ManagerUl_Load()
-InkHome_L_LinkClicked()
-btnAdd_Click()
-btnModify_Click()
-btnDelete_Click()
-btnPrint_Click()

1 1
AddAppointment <Boundary> displayAppointments DeleteAppointment <Boundary> ModifyAppointment <Boundary>
-objAddApp: ManagerController -objAppController: ManagerController
-AddAppointment_Load() -displayAppointments_Load() -DeleteAppointment_Load() “ModifyAppointment_Load()
-btnSubmit_Click() im0 ClEl() -btnSearch_Click() -btnSearch_Click()
-btnClear_Click() -btnCancel_Click() -btnCanceI_CIick()
-btnCancel_Click() ! -
1
s 1

ModidyAddAppointment

<Boundary>

-objAddApp: ManagerController
-ModifyAddAppointment_Load()
+New()

-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

1

1

ManagerController <C ller>

+Schedule: List(Of Appointment)
+addAppointment()
+loadSchedule()
+displaySchedule()
+deleteAppointment()
+modifyAppointment()
+printSchedule()

Appointment <Entity>

-appDate: Date
-appTime: String
-appTitle: String
-cuslID: String

-applD: String
-appDescription: String
+Get/Set appDate
+Get/Set appTime
+Get/Set app Title
+Get/Set cusID
+Get/Set appID
+Get/Set appDescription

117

Dynamic Design Model

This is a detailed sequence diagram for 5a) Create a new invoice

| I |
| |

1 I 1 |
; 1 | | | |
Logs in i | | | !
|} I | | I
Lhecksand Retuns | | | 1 \
I 1 | | | |
—Show(i— | | | |
2 I. 5 I I | ! |
o e | | | |
I | | | |
| | | |
| | | |
T btnAddJob’ | | i
| | |
\ btnlobs_Click: ! | |
: Typesin info in txtbox ; :
| | I
T Regular- | |
{ bnSubmi btnSubmit_Click J :
| |
| AddJ;
|
I
|
I Adds Job
I
I
I
| — — -AddsJob — — — 8§
I |
| - —=pddsJob — — —— \ |
I I |
| | |
I 1 |
| | |
| TR T sEpzeoias I |
| lose() | | |
[i | | |
] el | | |
o R 4 | | I
| [| | |
hm‘: it | | | |
' | | 1 1
! | | | |
=~ Bif) ——————~—] [| ! |
| | I | | I I
| | 1 | | 1 |
| | I | | | |
| I 1 | | 1 1
| | I | | | |
| | 1 | | 1 1
| | I I I

118

This is a detailed sequence diagram for 5b) Cancel an existing invoice

| [1
| |
Logs in:

| |
| |
| |
| |
-Checks and Retuns | |
| | |
——Show(}—, |
! | |
btninvoics |
| |
I
|
tn Deletelnvoic:
I
\ btnDeletelnvoice_Cli
|
T Types
|
I
I
I
|
I
|
I
|
I
|
I
|
I
|
I
I .
_______ I_____.D,splav ————————
|
I
I
I — — Close() — — —
! 1rik
T InkHomel
|
I |
'
htrEvi |
bnExit |
g |
"""" Bl =—====""N |
I | |
I | |
I | |
I | |
I | |
| | |
I | |

119

|
|
|
|
|
|
|
|
|
|
|
|
|

btnSearch_Click——

— — -Deletasinvoice: — —

Deletslnvoi

— Deletes invoice —

I
|
|
|
I
I
I
|
I
|
|
|
|
|
|
|
I
|
I
|
I
|

:InvoiceController m

eletes Invoice

ing invoice

isti

for 5¢) Modify an ex

iagram

detailed sequence d

isisa

Th

Logs in

Modifies Invoice

—btSubmitinwice_Cli
'<— — = -Modifies Inwoice- — — —

:ModifyAddinvoice :InvoiceController m
odifylnvo
— — — Modifies Invoice— —
|
i
|
|
i
|
i

g e o o I L spmeaspem e ey

»
>
]
|

= = IO e —

“btninvoice_Click

~ — — — — —Displays Invice- — |
Typesin ID-
b -—.

|

-

Checks and Retuns

lm Modifylnvoice_Ci

Typesin Info for

— = ~Closel}~ — — —

— = = = = — — — Application. Exit(}~ — — — — — — —

120

This is a detailed sequence diagram for 5d) Display/print an existing invoice

| I
| . I
Logs in-
Checksand Retms.

——————— Displays Jobs-

]
I
I
I
I
I
I
|

:bininvoice_Click:

btnDisplayOs

Typesin ID-

btnCancel

I
I
I
T
I
I
I
2
I
I
I
I
I
T
I
I
I
I
I
I
|
T
|
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
T
|
T
I
I
|
T
I
I
I
I
I
I
I
I
I
I
|
I

IApplicatim.Exit()—

121

— — —Displays Invoice: — — —

Displays Invoice

- — — -Displays Invoice— — —

This is a detailed sequence diagram for 5e) Display/print a list of all invoices for a given week

with a payment status

,
Log:
Checksand

= = — = — — —Displays Inveice- — |
: .
|
|
peinthe

bminvoice_Click-

|
s in
and Retuns!

binDisplayWeekly_Cli

- — —Display Invoices in Istiobs — —

TR 7%

8
o
5

[~ — — — — — — — Application. Exit)~ — — — — — — — .

i
§
\\\\\\\\\\\\\\\\\\ R T R
I
8
=]
|
2 |
] |
5 |
i
B |
&8
2 |
T |
|
|
|

122

for 6a) Record a full payment

iagram

detailed sequence d

isisa

Th

bmPayment Cii
Typesin InvoiceID.

Logs in

Receptionist m m :AddPayment :Invoice Controller DisplayandSave AddPay :PaymentController

8
3
H
£
®
k|

_C
Typesin info

|
T
|
T

mSearch_Cli

~ — — — — — — -Loadsthenvoice beingused — — — — — — —

btnSubmitiob_Click

tnSubmitiob”

oo iy o o

123

for 6b) Cancel/credit a payment

iagram

detailed sequence d

isisa

Th

T T

:Payment

:PaymentController

:PayUl :CancelPayment CreditPay

I

i |

Re(uns.
|
—Show(}—

Logs
Checksand

1
Y
|
|
|

7 T
<
¥
&

Q

..m.

S A A

3 3

c_
[
o
o
e
8
&
2

(& — — -Cancel Payment— — —

Ll
|
|
|
|
|
|
|
|
|
|
1

]
|
|
|
|
I
|
|
|
|
|
|
I
|
|
€<
)
L4 |
)
-1

T
|

— —Closel)- — — -

I

btnCancel
l
|
|
|

== mmm =

it

—————— -

124

This is a detailed sequence diagram for 6¢) Print a receipt

°

:LoginForm
]
|

Logs in
Checks and Retuns'

I
I
I
|
I
I
I
I
I
1

btnPayment_Click-
——————— === —— —DisplaysPayment — —il— — = — — — — —— —

|

I

|

I

|

T

|

I bnViewReceipt_Click:

|

I

|

I

|

T Typesin ID-

|

T

|

|

|

|

|

|

|

|

I

|

|

I

I

I

|

——————— T — — — — — — —Displays Message Box with Payment Info- — — — il — — — — — = — = — — —

|

T

|

1 = === Close() = ==~

|

I

I

| -—-——Close“--~—-,

I I

I I

I I

I I

I I

I I

I I

I I

b e |

I I
|
I
I

125

btnSearch_Click-

~ —Displays the Payment- — —

|
1
|
1
|
|
|
|
|
I
|
I
|
I
|
I
|
1
|
1
|
|
]
1
|
1
|
1
|
|

-DisplayAPaymen

— -Displays the Payment— —

Displays Payment

This is a detailed sequence diagram for 7a) Add a new appointment

[} I
| I

1 I | 1 |
. | | | | |
logsin 1 | | | |
| | | | |
Lhecksand Retuns 1 | | | |
| | I | | |
—Show(i— I I | I
goinea I | | | I |
v =5t | | | |
| et | | |
| tnScheduleManager_Cli | | |
| | | |
T btnAdd | | |
I | I |
| btnAdd_Click \ |
: Typesin info in txtbox ! :
I
I I |
T | |
: btnSubmit_Click J :
I |
| addAppointment:
I
I
|
I Adds Appointment
I
I
: — -Adds Appointment— — |
I
| — —Adds Appointment — — | :
| | |
I | |
I I |
| | |
| iiasesa T | |
I Clase(} I I I
| | | | |
| e] | | |
| | | | |
I S Rl | I |
- [[I [
v | | | |
A | | | |
~ T Bfl) === [| | I |
| | | | | | |
| | | | | | |
| | 1 | | | |
| | 1 | | | |
| | | | | | |
| | 1 | | ! |
| | 1 I |

126

This is a detailed sequence diagram for 7b) Cancel an existing appointment

m
[l]
| _ |

Lngsln—'

‘Checks and Retuns

:—Show()—b:
[U

Typesin ID in ttbox.

1
|
I
|
I
|
I
I
I

btnScheduleManager_Click

"""" Displays Appointment Delet

|
I
|
|
|
]
|
I
'
E

127

btnSearch_Click

— — Deletes Appointment — —

I
|
I
|
I
|
I
|
I
|
I
|
|
|
|
|
|
I
I
|

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I

deleteA ppointment-

— —Deletes Appointment- —

:ManagerUl :DeleteAppointment [l :ManagerController

tment
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Deletes Appointmant

This is a detailed sequence diagram for 7¢) Modify an existing appointment

m :ManagerUl :ModifyAppointment :ModifyAddAppointment :ManagerController
1 1 1 I
| U

\
Logs in- H
“Checks and Retuns! H
1

|

|

)
|
|
|
|
|
|
|
|
|

1 ‘btnScheduleManager_Clit |
|
|
|
|
|
|
|
|
|

|
1
|
|
I
1
|
I
|
I
|
I
1
I
1
]
1
I
I
I
1
I
1
I
1
I
I
I
I
I
I
I
I
1
I
1
|

modifyAppointment:
Modifies Appaintment

— Modifies Appointment-

= = = Closg()= = = =

]
|
|
]
1
|
|
|

[———, Application. Exit()

128

This is a detailed sequence diagram for 7d) Print weekly schedule

w
m :ManagerU| :displayAppointments :ManagerController
—— | | |

s in H

“Checks and Retuns :
|

|

|

|
I
I
|
|
|
I
|
]
I
I
|
|
|
I
|
I
I
|

I
| |
| |
I |
| I
I I
| !
I I
| |
| |
| I

< ! !
———m———— Displays Jobs— — — il — — — — — — — — — — | |
[| |
I | |
| | |
[| |
| | |
T btnP | |
I | |
[| |
I | |
I | |
I | |
I | |
I | |
I | |
| | |
[| 1
| 3 | |
I _Cl |
| |
I printSchedul
|
I
|
I retrieves Appointment info
|
I
I
H — — — -Displays Schedule — — —
I |
1 — — — -Displays Schedule— — — — 1
" I
———————— - — — —— — — — — Displays Appointments in lvSchedule— — — : :
|
BtnOk : 1
| |
| |
| |
| 1
-~ oot - - | |
| |

———————— Application Exit- — — — — — — —

129

GUI Model

Login Page

This is where a user logs in

| Username

Password

Home Page

This is where a user navigates to the various categories

Just the Job

RSN [N | W .

Payment ‘ Schedule Manager ‘

130

Customers Page

This is where a user sees all the customers and performs various requirements to customers

-

a5 Customers (== =]

Home

Mame: Adam

ID: 343

Address: StL

Phone Number: 145621458
Customer Type: Repeat

| »

m

Mame: Phil

1D: 70

Address: The Road

Phone Number: 524156256 &

l Add a Customer] [Digplay All Customers]

[Maodify a Customers l [Delete a Customer]

[Display a Specific Customer]

Adds Customer Page

This is the form to add a customer

55 Add Customer [= (S
Name:
ID:
Address:

Phone Number:

Customer Type:

Submit | | Clear ‘ | Cancel

131

Modify Customer Search Page

This is where a user searches for the customer he wants to modify

o=/ Modify Customer

Search by 1D
[Search by Name

| Search | | Cancel

Modify a Customer Page

This is where the user modifies a customer’s info

- Modify Custorner ==
Name: [Adam]
ID: 343
Address: StL
Phone Number: 145621458
Customer Type: Repeat

132

][S

Delete Customer Search Page

This is where the user searches for the customer they want to delete

o

a5 Delete Customer @lﬂ“ﬁ

Search by ID
"] Search by Name

[Search] [Cancel

Display Customer Search Page

This is where a user searches for a specific customer to display

o5 Display Custormer |- E]

Search by ID
[] Search by Mame

| Search | | Cancel

133

Employee Page

This is where a user sees all the employees and performs various requirements to employees

' Employee []l-E]]

Home

MName: Max -
1D: MB125M
Address: OH |
Schedule:

’ Add an Employee] ’ Display Employees l

| Delete Employee | | Modiy Employes |

| Display A Employee |

Add Employee Page

This is where a user adds an employee

" 4 Add Employes =

Name:

ID:

Address:

Schedule: s
M:
T:
W:
TH:
F:
SA:

Pay-rate:

134

Delete Employee Search Page

This is where a user searches for an employee to delete

[

o= Delete Employee |- E S

] Search by ID
[] Search by Name

[Search] [Cancel

Modify Employee Search Page

This is where a user searches for an employee to delete

=/ Modify Employee |- E S|

] Search by ID
[7] Search by Name |

’ Search l ’ Cancel

135

Modify Employee Page

This is where a user modifies an employee’s info

a5 Modify Employee EIIEI

Name: =R
ID: MB125M
Address: OH
Schedule: s 0

M: 84

T: 84

W: 84

TH: 84

F: &4

SA: 0
Pay-rate: 25/

Display an Employee Search Page

This is where the user searches for an employee to display

"

o= Display Employee S|

Search by ID
] Search by Name

| Search | | Cancel

136

Jobs Page

This is where a user sees all the jobs and performs various requirements to jobs

as' Jobs [E=8(E= 5=
Home
stJobsList
Add a Job Digplay Jobs
Delete a Job Maodify a Job

| Display Completed Jobs |

’ Display Pending Jobs]

Display Specific Job

Add a Job Page
This is where a user adds a job

' Add Job

=)=]

Start Date: 4/25/2014

(MM/DDAYYYY)
Regular Job

Number of Weeks:
Location:

ID:

Status:

Customer ID:

Description:

Employee 1 1D:
Employee 2 ID:

Employee 3 1D:

137

Delete Job Search

This is where a user searches for a job to delete

a5 Delete Job

Search by 10:

’ Search] [Cancel

Display Completed Jobs Page

This is where a user looks at the completed jobs

all Display Completed Jobs | (=] “ﬂ“ﬂl

Location: Canada -
[0 580 =
Status: Completed

Customer 10: 879
Descrption: Clean Syrup spill
Employee 110 pdh
Employee 2 10 none
Employee 3 1D none

m

Location: Jally "0l England

ID: J345

Status: Completed

Customer [D:; 343

Description: God Save the Queen
Employee 110: pdh

Employee 2 ID: none &

Close

138

Pending Jobs Page

This is where a user looks at jobs not completed

P

o=l Display Pending Jobs

-

RN O EXS

Location: YUKI

ID:u

Status: Pending
Customer |D: 672
Description: u
Employee 1 10: pdh
Employee 2 1D: none
Employee 3 10 none

Location: Faibanks

IO 102

Status: Pending

Customer |D; 343
Description: Let's get it going
Employee 1 10: SG1785
Employee 2 10 none

m

Modify a Job Search Page

This is where a user goes to search for a job to modify

F

o= Modify Job

Search by 1D:

[Search]

L= O]

[Cancel

TIC. ST T L T 1T

139

Modify a Job Page

This is where a user modifies a job

o=l Modify Job
Location: FruK]

1D: u

CustomerlD: 672

Status: Pending

Description: u

Employee 110: pdh
Employee 2 1D:

Employee 3 1D:

Display a Specific Job Search Page

[E=N O =X

Cancel

This is where a user searches for a specific job to display

[

a- Display Specific Job

BN EOR (5

Search by 1D:

[Search]

[Cancel

140

Invoice Page

This is where a user sees all the invoices and performs various requirements to invoices

e -

o/ Invoices =0 EER (==
Home
Amourt: 70 -

Payment Status: Unpaid
Job List: J102.J247

Invoice 1D: IN3 L
Customer |D: MB

Amourt: 240

Payment Status: Unpaid

Job List: J238,0510.J65

m

1|

| Addinvoice | | Displayinvoices |
| Displayaninvoice | | Modfylnvoice |
| Display Paid Invoices | | Display Unpaid Invoices |
| Display Weekly Invoices | | Delete Invoice |

Add an Invoice Page

This is where a user adds an invoice

o2 Add Invoice =N R ==

Invoice 1D
Job ID:

Customer 1D:
Amount:

Payment Status:
Location: |

Description:

141

Delete an Invoice Search Page

This is where a user searches for an invoice to delete

o5 Delete Invoice @lﬂ“ﬂl

Search by 10

[Search] [Cancel

Display the Paid Invoices Page

This is where a user views the paid invoices

o' Paid Invoices EI@

Invoice |D: 67

Job (D 45

Customer 1D: 11
Amount: 50.00
Payment Status: Paid
Location: Butler
Description: None

Close

142

Modify an Invoice Search Page

This is where a user searches for an invoice to modify

=l Modify Invoice

=]l & e

Search by 1D:
Search] [Cancel
Modify an Invoice Page
This is where a user modifies an invoice
o' Modify Invoice EI@

Invoice 1D INZ
Job ID: J102
Customer ID: 343
Amount: 23

Paymert Status: Wnpaid

Location: [SET——

Description: Let's get it going

Cancel

143

Unpaid Invoices Page

This is where a user views the unpaid invoices

P

o= Unpaid Invoices

Imvoice 10: IN1

Job 1D J345

Customer ID: 343
Amount: 25

Payment Status: Unpaid
Location: Joly "0l England

Invoice 1D: N3

Job 1D g

Customer ID: 672
Amount: 25

Payment Status: Unpaid
Location: g

Description: g

Description: God Save the Queen

Display an Invoice Search Page

This is where a user searches for a specific invoice to display

L

- Display One Invoice

Search by 1D

[Search

=N [ROR(E5S

’ Cancel

144

Payments Page

This is where a user sees all the payments and performs various requirements to payments

1 @5 Payments === |£ﬁ I

Home
Fayment |0: P1

Custamer 1D: 70
Payment Amournt: 525

| Add Payment | | DisplayAl |

[Wiew Receipt] [Cancel Payment]

| Credit Payment |

Add Payment Search Page

This is where a user searches for the invoice to add a payment to

o5 Add Payment | = || [=] ||ﬁ

-

Search by Invoice 1D

Search] ’ Cancel

145

Add Payment Page

This is where a user adds payment to an invoice

o5 Add Payment = || =] ||i"'._?-|
Customer ID: [IIF]
Fayment 10
Amourt:
Submit | | Clear | | Cancel

Cancel Payment Search Page

This is where a user searches to cancel a payment

i

o' Cancel Payment || |)

Search by Payment ID

[Search] | Cancel

146

Credit Payment Search Page

This is where a user searches to credit a payment

o= CreditPay

Search by Payment 1D

[Search]

=N [ROREX=

Cancel

View Receipt Search Page

This is where a user searches for a receipt they want to see for a payment

o~

o= ViewReceipt

Search by Paymert D

| Search

|- S

Cancel

147

Display Weekly Invoices Search Page

This is where a user searches for a week to view the invoices in that week

o= DisplayWeekly | = | (w23

Enter a Date to zearch the weelk:

{(MM/DDAYYY)

Search | | Cancel |

Weekly Invoices Page

This is where the weekly invoices are displayed

o' Weeklylnv [oll-E sl

Jobs this weelk: J798,J121,J238 J102 J247 0910, -
Invoice ID: IN2

Customer |D: 344 2
Amaourt: 120

Payment Status: Unpaid
Job List: J798.0121

Invoice 10: 1M1
Customer D 70

Amourt: 70
Paumeant Statie- | Innaid
1| i |k

148

Manager Page

This is where a user sees all the appointments for the manager and performs various
requirements for those appointments

o= ManagerUl E@

Home

Date: 51272014 -
Time: 4:00 PM

Appointment’s [D:3

Title: Meeting

Customer's 1D: phd

Description: This is a meeting of sorts

m

Date: 4/23/2014

Time: 4:00 PM &
Appointment’s 10:56

Title: Meating

Customer's |10: phd

Description: This meeting is the coolest.

-

[Add Appointmert] [Maodify Appoirtment]

| Delete Appointment | | Prnt Schedule |

Add Appointment

This is where a user adds an appointment

as! AddAppointment EI@

Date:

Time:

Appoirtmert 1D:
Title:

Customer's |1D:

Description:

149

Modify Appointment Search Page

This is where a user searches for an appointment to modify

o2 MedifyAppointment ||| E | (|
Search by ID:
| Search | | Cancel
Modify Appointment Page
This is where a user modifies the appointment
o' ModifyAddAppointment o -E |5 |

Date: 5/12/2014

Time: 4:00 PM

Appointment 1D 3

Title: Meeting
Customer’s D phd
Description: This is a meeting of sorts

Cancel

150

Display Appointments

This is where the appointments for that week are displayed

L

o= displayAppointments o[- S

Date: 4/2372014

Time: 4:00 FM

Appointment’s 10 56

Title: Meating

Customer’s 10: phd

Description: This meeting is the coolest.

Ol

Delete Appointment Page

This is where a user searches for an appointment to delete

i~

o' DeleteAppointment |i| lﬂ“ﬂl

Search by ID:

| Search | [Cancel

151

Flexibility of Our Design

When our team first began to design the basic layout of how we wanted our classes and code
organized, we had a limited knowledge about software architecture. We threw together some
entity classes and had a general idea of what we wanted, but our design was far from being
polished. Transitioning from Iteration 1 to Iteration 2 was a huge wake up call, as more and more
functionality was being required. This forced us to really improve upon our class organization
and structure. By the end of Iteration 2, our team had put together a class diagram we were proud
of. The layering of entities, boundaries, and controllers modeled a professional piece of software,
and this our design became more flexible. We hit the ground running in Iteration 3, as the
addition of new classes became intuitive given our solid foundation. Overall, the flexibility of
our design allowed us to work efficiently in the final stages of this project, which was a huge

accomplishment for us.

Tested Code

For our completed application, please refer to our Wiki. Over the course of this iteration, we
hand tested our code, as we did not learn about unit testing yet. We felt that hand testing was
sufficient, given the scope of this project but unit testing would be necessary if this application

was extended to handle a large amount of data.

152

Chapter 4: Conclusions

The experiences of the software development approaches have really altered our view on
software development. When we began this project, we were unaware of the amount of
preparation we would need to code. This was the first time that we were exposed to an iterative
approach; it was slower than it would normally be due to the lack of exposure. The hardest part
was our understanding of all these new subjects along the way as we did not fully understand
them until later in the project.

If we knew how to make a proper class diagram, proper interaction diagrams and other
proper documentation before this class and project, we could have avoided some of the
headaches we encountered during the first iteration especially. In the professional world of
software engineering, we would have developed our UML diagrams to focus on much more
detail. For the code, it was a similar problem. As our knowledge of Visual Basic grew, our GUI
and structure of code improved as a whole.

With this lack of knowledge and experience, we required more time for development
especially as we started new iterations. We were not only adding on to this software, but also
restructuring our code to be better and more object-oriented. We thought that overall this is an
efficient process to build real, professional software, but there is a serious need for experienced
programmers and software engineers to direct workflow. If done correctly the agile and iterative

approach is very powerful, but needs to be planned and directed correctly.

Using the object-oriented approach, the main advantage is that we can develop our
entities and make them very efficient for writing to files in the back end. It is also very easy to
understand the flow of the project by creating controllers that are objects. These controllers are
very easy to work with in the code. One of the disadvantages in the object-oriented approach is
that there is a possibility of serious restructuring if new requirements are introduced. Another
disadvantage is with the new entities there could easily be a lot of overhead work by adding new
controllers and/or new boundaries. Overall, the object-oriented approach is a great way to

develop professional software.

153

Chapter 5: Team Organization and Roles

The team was a single level team with not much leadership as we held each other accountable versus a
hierarchical group. However there were still roles and contributions for each person.

The team roles were as follows:
Philip Dwyer

He was the official team lead by completing all the weekly status reports. He was the documentation lead
as well by organizing most things that were not code related. The sequence diagrams were handle by him,
as well as other documentation. He updated the TOE tables to handle the 2™ iteration. In general, Phil
handled the Wiki, so the errors in the Wiki were his responsibility.

Adam Sanders

He was the coding lead, which involved handling the majority of the code. Towards the end of this
project, Adam became more of the team lead as the last two weeks of the project involved mostly code.
With his duties, he molded into a vice team lead by organizing and informing our group of upcoming
deadlines and due dates. Also, in the early stages of the project, Adam contributed to the diagrams.

Max Brodbeck

He was the Dabbler or the “everything else” lead, which consisted of handling some of the code,
completing some of the diagrams, and performing some of the documentation. He wrote all of the Weekly
Schedule requirements code, redesigned some of the GUI, and worked on the Invoices requirements for
code. Also he updated the CRC cards and originally created the TOE tables. He originally created the
class diagrams as well.

Sean Gibbens

He was the diagram lead, which was the handling of the final class diagram and any other diagram that
spawned from the class diagram like the package diagram. Sean also handled the use case diagram
organizing it completely in the early stages of the project. In terms of coding, Sean contributed to the Jobs
section in our software.

154

Appendices

Peer Evaluation Forms

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME: =~ F) @)

Please rate the team’s work and presentation by cireling the right number.

1.

10,

The demonstration was complete and included all the expected functionality
for this iteration. : p
(Strongly Disagree) 1 2 3 4 C;)(Strongly Agree)

The use case diagram and scenarios were complete (i.e. included both basic
and alternate flow) and easy to understand. .
(Strongly Disagree) 1 2 3 4 (_SXStmngly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators,)
(Strongly Disagree) 1 2 3 /y 5 (Strongly Agree)

The interaction diagrams seemed to be complete and represented the
message passing among classes. -
(Strongly Disagree) 1 2 3 (jl) 5 (Strongly Agree)
The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relationships among classes.
(Strongly Disagree) 1 2 3 4 5fstrongly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree) 1 <_2/ 3 4 5 (Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system, -~
(Strongly Disagree) 1 2 3 Cfl;) 5 (Strongly Agree)

The overall presentation was well prepared and delivered by the team
effectively. o
(Strongly Disagree) L 2 3 4 { }»{Strongly Apgree)

The team appears to be well organized and functioning,
(Strongly Disagree) 1 2 3 4 7 ‘)‘S)(Stmngly Agree)

I have the following additional constructive suggestions and/or comments for
the team:

155

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME: S pAA/\

Please rate the team’s work and presentation by circling the right number.

1.

10.

The demonstration was complete and included all the expected functionality
for this iteration.
(Strongly Disagree) 1 2 3 4 trongly Agree)

The use case diagram and scenarios were complete (i.e. included both basic
and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

The interaction diagrams seemed to be complete and represented the

message passing among classes.
(Strongly Disagree) 1 2 3 4 ijtrongly Agree)

The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relationshi ong classes.
(Strongly Disagree) 1 2 3 4 wrongly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree) 1 2 3 4 (E}Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system.
(Strongly Disagree) 1 2 3 4 @Tongly Agree)

The overall presentation was well prepared and delivered by the team
effectively.

(Strongly Disagree) 1 2 3 4 (%Strongly Agree)

The team appears to be well organized and functioning.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

I'have the following additional constructive suggestions and/or comments for
the team: :

156

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME: S(\) ﬂ’w\\

Please rate the team’s work and presentation by circling the right number,

1.

10.

The demonstraticn was complete and included all the expected functionality
for this iteration, '
(Strongly Disagree) 1 2 3 4 @rongly Agree)
The use case diagram and scenarios were complete (i.e. included both basic

and alternate flow) and easy to understand,)
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators. 7~
(Strongly Disagree) 1 2 3 k\ 4 5 (Strongly Agree)
e I

The interaction diagrams seemed to be complete and represented the
message passing among classes. -
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The class diagram was well organized based on the 3-tier architecture and
included all atiributes, operations and relationships among classes,
(Strongly Disagree) 1 2 3 4 G@tmngly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree) 1 2 3 K4/ S (Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system. .
(Strongly Disagree) 1 2 3 4 (5 (/ trongly Agree)

g

effectively.

The overall presentation was well prepared and, delivered by the team
(Strongly Disagree) 1 2 3 4

(Birongly Agree)

The team appears to be well organized and functioping.
(Strongly Disagree) 1 2 3 4 < igtrongly Agree)

I have the following additional constructive suggestions and/or comments for

the team;) i
(o Sob!

157

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME; S PAM

Please rate the team’s work and presentation by circling the right number.
1. The demonstration was complete and included all the expected functionality
for this iteration.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

2. The use case diagram and scenarios were complete (i.e. included both basic

and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 3 4 OStrongly Agree)

3. The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators, c‘J ‘
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree) hée (s Y

4. The interaction diagrams seemed to be complete and represented the
message passing among classes.
(Strongly Disagree) 1 2 3 4 (3XStrongly Agree)

5. The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relatienships among classes.
(Strongly Disagree) 1 2 (/f 5 (Strongly Agree) M,M«E.zé W B Y e

6. The GUI design was well modeled and presented
(Strongly Disagree) 1 2 C?,Strongly Agree)

7. The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system. 7,!
(Strongly Disagree) 1 2 3 (}7) 5 (Strongly Agree) (VY e

8. The overall presentation was well prepared and delivered by the team
effectively.

(Strongly Disagree) 1 2 3 4 @(Strongly Agree)

9. The team appears to he well orgamzed and functlo n'g
(Strongly Disagree) 1 2 8 trongly Agree}

10. I have the following additional constructive suggestions and/or comments for
the team:

158

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME: _ CPAM

Please rate the team’s work and presentation by circling the right number.

1.

10.

The demeonstration was complete and included all the expected functionality
for this iteration. =~

(Strongly Disagree) 1 2 3 4 \»5 %trongly Agree)
The use case diagram and scenarios were complete (i.e. included both basic
and alternate flow) and easy to understand,

(Strongly Disagree) 1 2 30 4 i 5(Strongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators. ~
(Strongly Disagree) 1 2 3 (4% 5(Strongly Agree)

The interaction diagrams seemed to be complete and represented the
message passing among classes. o
(Strongly Disagree) I 2 300 N4y 5 (Strongly Agree)

The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and re]atmnshlps among classes.
(Strongly Disagree) 1 2 3 (J 5 (Strongly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree) | 2 3 4 (5 ¥Strongly Agree)

The UML design diagrams appear fo be accurately mapped to the
implementation (code) of the system.
(Strongly Disagree) 1 2 3 (43 5 (Strongly Agree)

The overall presentation was well prepared and delivered by the team
effectively.

(Strongly Disagree) 1 2 3 4 Y(Strongly Agree)

The team appears to be well organized and functioning.
(Strongly Disagree) 1 2 3 4 (5AStrongly Agree)

T have the following additional constructive suggestions and/or comments for
the team:

159

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1
TEAM NAME: % /’{7 f"'\

Please rate the team’s work and presentation by circling the right number.

1.

10.

The demonstration was complete and included all the expected functionality
for this iteration, .
(Strongly Disagree) 1 2 3 4 @(Strongly Agree)

The use case diagram and scenarios were complete (i.e. included both basic
and alternate flow) and easy to understand. N
(Strongly Disagree) I 2 3 4 (75 (Strongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators. -
(Strongly Disagree) 1 2 B3> 4 5 (Strongly Agree)

The interaction diagrams seemed to be complete and represented the
message passing among classes, N
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

The class diagram was well erganized based on the 3-tier architecture and
included all attributes, operations and relationships among classes.
(Strongly Disagree) 1 2 3 4 @(Strongly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system.)
(Strongly Disagree) 1 2 3 @) 5 (Strongly Agree)

The overall presentation was well prepared and delivered by the team
effectively. . :
(Strongly Disagree) | 2 3 4 @Strongly Agree)

The team appears to be well organized and functioping.
(Strongly Disagree) 1 2 3 4 _SJStrongly Agree)

I have the following additional constructive suggestions and/or comments for
the team: ‘

160

TEAM EVALUATION AND FEEDBACK FORM

Please rate the team’s work and presentation by circling the right number.
1. The demonstration was complete and included all the expected functionality
for this iteration.

(Strongly Disagree) 1 2 3 4 @Strongly Agree)

2. The use case diagram and scenarios were complete (i.e, included both basic
and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 3 4 @tmngly Agree)

3. The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)
4. The interaction diagrams seemed to be complete and represented the
message passing among classes.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)
5, The class diagram was well organized based on the 3-tier architecture and

included all attributes, operations and relationships among classes.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

6. The GUI design was well modeled resented.
(Strongly Disagree) 1 2 4 5 (Strongly Agree)

7. The UML design diagrams appear to be accurately mapped to the
implementation (code} of the system,
(Strongly Disagree) 1 2 3 4 trongly Agree)

8. The overall presentation was well prepared and delivered by the team
effectively.
(Strongly Disagree) 1 2 3 4 @rongly Agree)

9. The team appears to be well organized and functioning.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

10. I have the following additional constructive suggestions and/or comments for
the team:

Lets of “umm's

161

TEAM EVALUATION AND FEEDBACK FORM
ITERATION: 1

TEAM NAME: SPAM_

Please rate the team's work and presentation by circling the right number.
1. The demonstration was complete and included all the expected functionality
for this iteration. .
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

2. The use case diagram and scenarios were complete (i.e. included both basic
and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 3 @) 5 (Strongly Agree)

3. The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

4. The interaction diagrams seemed to be complete and represented the

message passing among classes. %
OX
!

N,uq.,.y.:!;fy fé P
(Strongly Disagree) 1 2

5 (Strongly Agree) L T

5. The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relatiar hips among classes,
(Strongly Disagree) 1 2 3 é3 5 (Strongly Agree)

6. The GUI design was well modeled and presented.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

7. The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system,
(Strongly Disagree) 1 2 3 C ; 5 (Strongly Agree)
8, The overall presentation was well prepared and delivered by the team
effectively.
(Strongly Disagree) 1 2 3 @) 3 (Strongly Agree)

9. The team appears to be well organized and W,f,ul%ctioning.
(Strongly Disagree) 1 2 3 (;4 5 (Strongly Agree)

10. I have the following additional constructive suggestions and/or comments for
the team: ‘

TEXT RS Berrpmds Puovrd By Lpep %y;m_ o, MI?

162

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME: 6}0 A' M

Please rate the team’s work and presentation by circling the right number.

1.

10.

The demonstration was complete and included all the expected functionality
for this iteration,
(Strengly Disagree) 1 2 3 4 ®(Strongly Agree)

The use case diagram and scenarios were complete (i.e, included both basic
and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 £ 4 5 (Strongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators.
(Strongly Disagree) 1~ § 3 4 5 (Strongly Agree)

The interaction diagrams seemed to be complete and represented the
message passing among classes,
{Strongly Disagree) 1 2 16) 4 5 (Strongly Agree)

The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relationships among classes,
(Strongly Disagree) 1 2 B 4 5 (Strongly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree} 1 2 3 %) 5 (Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system.
(Strongly Disagree) 1 2 L 4 5 (Strongly Agree)

The overall presentation was well prepared and delivered by the team
effectively.
(Strongly Disagree) I 2 3 4 G (Strongly Agree)

The team appears to be well organized and fanctioning.
(Strongly Disagree) 1 2 3 4 B (Strongly Agree)

I have the following additional constructive suggestions and/or comments for
the team:

163

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

TEAM NAME: Lo

Please rate the team’s work and presentation by circling the right number.
1. The demonstration was complete and included all the expected functionality
for this iteration.

(Strongly Disagree) 1 2 3 4 @Strongly Agree)

2. The use case diagram and scenarios were complete (i.e. included both basic

and alternate flow) and easy to understand. P
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

3. The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators.

(Strongly Disagree) 1 2 3 4 @Strongly Agree)

4. The interaction diagrams seemed to be complete and represented the
message passing among classes, e
(Strongly Disagree) 1 2 (3’ /4 5 (Strongly Agree)
5. The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relationshi among classes.
(Strongly Disagree) 1 2 3 4 '@)Strong]y Agree)

6. The GUI design was well modeled and presented,
(Strongly Disagree) 1 2 ?> 4 5 (Strongly Agree)
.

7. The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

8. The overall presentation was well prepared and delivered by the team
effectively. 6 B
(Strongly Disagree) t 2 3 4 S (Btrongly Agree)
9. The team appears to be well organized and functjiﬁﬁff .
(Strongly Disagree) | 2 3 4 % 5(8trongly Agree)

10. T have the following additional constructive suggestions and/or comments for
the team:

:
X . AR R ALY Ot f?’“%v:)
abess qw'\}; P ponlotEn aee Jtke pasts ettt ’
vl -

Lrvodkline DRCE perwn o
\q\w”f'}(}(u .)
: Bamtbiar eall o3 qoarg fpdad seen XOOY ue

lye LN

GUL = 1 dR yed ceold eavEyy wl pak hove b gt 2 ntry it m ot 40 ger
bt s possb A

164

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1 5

TEAM NAME: DG VW

Ll

Please rate the team’s work and presentation by circling the right number.,

1.

190.

The demonstration was complete and included all the expected functionality
for this iteration.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The use case diagram and scenarios were complete (i.e. ineluded both basic

and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators, _
(Strongly Disagree) 1 2 3 (4) 5 (Strongly Agree)

The interaction diagrams seemed to be complete and represented the
message passing among classes.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The class diagram was well organized based on the 3-tier architecture and
included all attributes, operations and relationships hmong classes.
(Strongly Disagree) 1 2 3 4 5/(Strongly Agree)

The GUI design was well modeled and presented.
(Strongly Disagree) 1 2 3 CD 5 (Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system,
(Strongly Disagree) 1 2 3 4 (/ ?STQStrongly Agree)

—

The overall presentation was well prepared and delivered by the team
cffectively.
(Strongly Disagree) 1 2 3 4 é(f@trongly Agree)

The team appears to be well organized and functioping.
(Strongly Disagree) 1 2 3 4 C/S ,(>trongly Agree)

\

—
I have the following additional constructive suggehfons and/or comments for

the team: |
Nice Qﬁj J

-,

Fresco, (od SHuké

165

TEAM EVALUATION AND FEEDBACK FORM

ITERATION: 1

4

TEAM NAME: _SY A \

Please rate the team’s work and presentation by circling the right number.

1.

4.

10,

The demonstration was complete and included all the expected functionality
for this iteration.
(Strongly Disagree) 1 2 3 4 @(Strongly Agree)

The use case diagram and scenarios were complete (i.e, included both hasic
and alternate flow) and easy to understand.
(Strongly Disagree) 1 2 3 4 @trongly Agree)

The CRC cards described effectively all candidate analysis classes with their
responsibilities and collaborators.

N
(Strongly Disagree) 1~ 2 3 @/\ 5 (Strongly Agree)

The interaction diagrams seemed to be complete and represented the
message passing among classes. *)
(Strongly Disagree) 1 2 3 é) 5 (Strongly Agree)

The class diagram was well organized based on the 3-tier architecture and
included all attribufes, operations and relationships among classes.
(Strongly Disagree) 1 2 3 4 @(Stmngly Agree)
,

The GUI design was well modeled and presented.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code} of the system, —
(Strongly Disagree) 1 2 3 4 @Strongly Agree)
The overall presentation was well prepared and delivered by the team
effectively, .

(Strongly Disagree) 1 2 3 4 @:(Strongiy Agree)

The team appears to be well organized and functioning,
(Strongly Disagree) 1 2 3 4 Q\Eﬁt‘rongly Agree)

I have the following additional constructive suggestions and/or comments for
the team:

166

St

Fodwn T farl v
L Mewo soapeiiass 9 S
Z (O _case. e)n‘c-q“\w\w—\ / A = JM{"'
. R . e
e 3 (R aol‘!’b FB A Pen gl g, eues tleges kv Plad
e 2 .
4 (r\k-g;r arcten. Sia . gent ! d //
§ | UNE afuse PPt L LY g Lraokol cisags Jt‘ag menA T 8522 plean Mm@@»’?@/
w i,

b Cm'/c.rq Prvc{«»:mcﬂ/ el & e,
1Lool tmpreverens i JCAK A pinBuenty b Sl fooes do fupo® anere
B B | umce Aesi o rragpts. e cacl © 4. _ e , .
(\ Oyuall freses lakipe - 5 o _ o .
(o onneant -
I it e b arce ¢o he adple Fo wivgk an et £oSheser - S
e A e D51 e Alcptay . fHEs- e e e e
“ ottt _IVORES Ceme e comgd ABr Jebs e N
A b Mo S ﬁ—‘m.‘auuﬂ/’y Lo ok Have o o
Y/ LS S AT ol o et oy Y paspd Brekog ___/'-'C“'vﬂ tedilon Siodys
N Cf[‘\ @L(’/-QU(= = [A .cu'J) = Froe
_ R AS X 3 Lafi IR e
o Qo) AT heve & £t) . yw—“'a‘ff%;y) _..___,d_f__:/‘____fggmiﬂ/ I _
? troge U raprevesrene. Wowo - S Gul. oy Miee. —
o Tedwn SPRM wen e we Sdeaglioa 2

TEAM EVALUATION AND FEEDBACK FORM

ey cOAM

Please rate the team's work and presentation by circling the right number.

1.

10.

The demo was complete and included all the expected functionality for this
iteration
(Strongly Disagree) 1 2 3 4 @trongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e. included both basic and alternate flow).
(Strongly Disagree) 1 2 3 4 @trongly Agree)

The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaboratorsge:
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

The interaction diagrams seemed to be complete and presented the message
passing among classes effectively.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The UML class diagram included all attributes, operations and relationships
among classes.

(Strongly Disagree) | 2 3 4 (§BStrongly Agree)

All the Entity, Boundary and Control classes were presented and explained
well. .,
(Strongly Disagree) 1 2 3 4 Q\CStrongly Agrec)

The GUI design was impreved and present well.
(Strongly Disagree) 1 2 \ 5 (Strongly Agree)

The UML design diagrams appear to be aceurately mapped to the
implementation (code) of the system,
(Strongly Disagree) 1 2 3 4 (3\{Strongly Agree)

"y

The overall presentation was well prepared and delivered by the team
effectively. 2
(Strongly Disagree) 1 2 3 4 G}Strongly Agree)

I'have the following additional constructive suggestions and/or comments for
the team:

168

TEAM EVALUATION AND FEEDBACK FORM

ITERATION 2 ‘ [
TEAM NAME: S M

Please rate the team’s work and presentation by circling the right number.

1.

The demo was complete and included all the expected functionality for this
iteration,

-
(Strongly Disagree) 1 2 3 4 @jrétrongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e, included both basic and alternate flow).
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators-

(Strongly Disagree) 1 2 3 D 5 (Strongly Agree)
The interaction diagrams seemed to be complete and presented the message
passing among classes effectively. -,

(Strongly Disagree) 1 2 3 4 (EﬁStrongly Agree)

The UML class diagram included all attributes, operations and relationships
among classes,

(Strongly Disagree) 1 2 3 4 @Strongly Agree)

All the Entity, Boundary and Control classes were presented and explained
well,

(Strongly Disagree) 1 2 3 4 @ Strongly Agree)

The GUT design was improved and presented well.
(Strongly Disagree) 1 2 3 { ‘U 5 (Strongly Agree)

The UML design diagrams appear to be accurately mapped te the
implementation (code) of the system. i
(Strongly Disagree) 1 2 3 43 5 (Strongly Agree)

The overall presentation was well prepared and delivered by the team
effectively.
(Strongly Disagree) 1 2 3 4 ((5y(Strongly Agree)

10. T have the following additional constructive suggestions and/or comments for

the team:

169

TEAM EVALUATION AND FEEDBACK FORM

ITERATION 2 — @ A /y'\\
TEAMNAME: > Y 9Y

Please rate the team’s work and presentation by circling the right number.

1.

10.

The demo was complete and included all the expected functionality for this
iteration.)
(Strongly Disagree) 1 2 3 4 &Strongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e. included both bagit\and alternate flow),
(Strongly Disagree) 1 2 3 4 SA(Strongly Agree)

The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators:”
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The interaction diagrams seemed to be complete and presented the message
passing among classes effectively.
(Strongly Disagree) 1~ 2 3 4 5§Strongly Agree)

The UML class diagram included all attributes, opetations and relationships
among classes. y
(Strongly Disagree) 1 2 3 4 @ /(gtrongly Agree)
o

All the Entity, Boundary and Control classes were presented and explained
well.
(Strongly Disagree) 1 2 3 4 @‘gStrongly Agree)
The GUI design was improved and presented well. \

(Strongly Disagree) | 2 3 4 5 (Strongly Agree)

The UML design diagrams appear te be accurately mapped to the
implementation (code) of the system. AN
(Strongly Disagree) 1 2 3 4 i\S/éStrongly Agree)

The overall presentation was well prepared and delivered by the team
effectively. o
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

I have the following additional constructive suggestions and/or comments for
the team:

170

TEAM EVALUATION AND FEEDBACK FORM

ITERATION 2
TEAM NAME: DM

Please rate the team's work and presentafion by circling the right number.
1. The demo was complete and included all the expected functionality for this
iteration.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

2. The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e. included both basic and alternate flow).

(Strongly Disagree) 1 2 3 4 @;OStrongly Agree)

3. The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

4. The interaction diagrams seemed to be complete and presented the message
passing among classes effectively.
(Strongly Disagree) 1 2 3 @ 5 (Strongly Agree)

S. The UML class diagram included all attributes, operations and relationships
among classes.
{Strongly Disagree) 1 2 3 4 @Stmngly Agree) .

6. All the Entity, Boundary and Control classes were presented and explained

well, -
(Strongly Disagree) 1 2 3 4 (5}Strong1y Agree)

7. The GUI design was improved and present ell.
(Strongly Disagree) 1 2 3 (4 5 (Strongly Agree)

8. The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system. P
(Strongly Disagree) 1 2 3 4 {\i()Strongly Agree)
9. The overall presentation was well prepared and delivered by the team
effectively.)
(Strongly Disagree) 1 2 3 4 @trongly Agree)

10. I have the following additional constructive suggestions and/or comments for
the team:

—_— Q VT coun Le wu‘; ¢ 33/@55‘&

. S@ AN D &»f,wa«mw é@M L-G_’L UL DVR. dﬂ;‘} =) }QM\

Lowps,
dﬁ:f:’t\.x t& u.-\"i)

171

TEAM EVALUATION AND FEEDBACK FORM

ITERATION #:
TEAM NAME: Tepth Sepan

Please rate the team’s work and presentation by circling the vight number.

1. The demo was complete and included all the new expected functionality for
this iteration. ‘5
(Strongly Disagree) 1 2 3 4 @rongly Agree)
2. All defects detected and reported to the developers were addressed
effectively.
(Strongly Disagree) 1 2 3 4 rongly Agree)

the scenarios were complete (i.e. included both basié-and alternate flow).

3. The use case diagram was clearly improved from the previous iteration and
(Strongly Disagree) 1 2 3 4 G‘gﬂongly Agree)

4, The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

5, The interaction diagrams seemed to be complete and presented the message
Aosts ot Gnows Yrr@Rian

passing among classes effectively.
(Strongly Disagree) 1 2 3 5 (Strongly Agree) \h WB

6. The class diagram included all attributes, operations and relationships
among classes. ;
(Strongly Disagree) 1 2 3 4 (5/(trongly Agree)

7. The GUI design was improved and presented wel)5
(Strongly Disagree) 1 2 trongly Agree}

8. The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system. ’
(Strongly Disagree) 1 2 3 4 @Snongly Agree)

9. The overall presentation was well prepared and delivered by the team
effectively.
(Strongly Disagree) 1 2 3 C /(Strongly Agree)

of the semester.
/QS rongly Agree)

10. The team appeared to be better organized and imp ed since the beginning
(Strongly Disagree) 1 2 {

« \

- B\De/ f

pe

172

TEAM EVALUATION AND FEEDBACK FORM

ITERATION #: 2
TEAM NAME: 5 VMVI

Please rate the team's work and presentation by circling the Vzghtgnumber
1. The demo was complete and included all the fiew expected functionality for
this iteration. /
(Strongly Disagree) 1 2 3 4 / 5 (Stronglyv\Agree)

2. All defects detected and reported to the developerswere addressed
effectively, ~
(Strongly Disagree) 1 2 3 4 5i(Strongly Ag{;ee)

i
3. The use case diagram was clearly improved from|the previousiiteration and
the scenarios were complete {i.e. included both basic and alterna’@e flow).
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

4. The CRC cards for this iteration described effectively all candlldate classes
with their responsibilities and collaborators.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

5. The interaction diagrams seemed to be complete and presented the message
passing among classes effectively.

(Strongly Disagree) 1 2 3 4 5 (Strongly Agljpe)

!
|
6. The class diagram included all attributes, operations and relatlonghlps
among classes.

|
(Strongly Disagree) 1 2 3 4 | s (Strongly Agpee)
/

7. The GUI design was improved and presente wéll

|
(Strongly Disagree) 1 2 3 5 (Strongly Agree)

implementation (code) of the system.

(Strongly Disagree) 1 2 3 4

|
i
| !
8. The UML design diagrams appear to beg accurately mapped to the
! !
é S(StronglyAgyfee)
'

!
|
9. The overall presentation was well preparedﬁ and delivered! by the team
effectively. ' /
|

]
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

10. The team appeared to be better organized and improved since the beginning

of the semester. ;
(Strongly Disagree) 1 2 3 4 | 5(Strongly Agree)

/’.

(f)gygd j ij% // // o<

ng jwa W s on LJ/\?””\U

173

TEAM EVALUATION AND FEEDBACK FORM

ITERATION #:
TEAM NAME: Sp ;\\\/\

Please rate the team s work and presentation by circling the right number.

1.

10.

The demo was complete and included all the new _expected functionality for
this iteration.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

All defects detected and reported to the developers were addressed
effectively.
(Strongly Disagree) 1 2 3 4 5 (Ftrongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e. included both basic.and alternate flow).
(Strongly Disagree) 1 2 3 4 5 (§trongly Agree)

The CRC cards for this iteration described effecthely all candidate classes
with their responsibilities and collaborators

(Strongly Disagree} 1 2 trongly Agree)
The interaction diagrams seemed to be complete and presented the message

passing among classes effectively.
(Strongly Disagree) 1 2 3 4 5 §Strongly Agree)

The class diagram included all attributes, operatioﬂl’ls and relationships

among classes.
(Strongly Disagree) 1 2 3 4 5 (Btrongly Agree)

The GUI design was improved and presented well. /-
(Strongly Disagree) 1 2 3 4 5 Z%trongly Agree}

}
The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system, -
(Strongly Disagree) 1 2 3 4 (5 (Ptrongly Agree)

ot

The overall presentation was well prepared and delivered by the team
effectively. i
(Strongly Disagree) 1 2 3 4 {f\zftrongly Agree)

The team appeared to be better organized and improved since the beginning
of the semester.
(Strongly Disagree) 1 2 3 4 (Strongly Agree)
' J.

N Q(£SENYod Oy

A
very V°

174

TEAM EVALUATION AND FEEDBACK FORM

ITERATION #: 3
TEAM NAME: ¥ A

Please rate the team’s work and presentation by circling the vight number.

1.

10.

The demo was complete and included all the new expected functionality for
this iteration.
(Strongly Disagree) 1 2 3 4 Q}Strongly Agree)

All defects detected and reported to the developers were addressed
effectively. e
(Strongly Disagree) 1 2 3 4 Q}Strongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e, incladed both basic and alternate flow).
{Strongly Disagree) | 2 3 4 5 (Strongly Agree)

The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators.

(Strongly Disagree) I 2 3 4 @trongly Agree)
The interaction diagrams seemed to be complete and presented the message

passing among classes cffectively.
{Strongly Disagree) 1 2 3 4 @)Strongly Agree)

The class diagram included all attributes, operations and relationships
among classes.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The GUI design was improved and presented well,
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system.

(Strongly Disagree) 1 2 3 4 @Strongly Agree)
The overall presentation was well prepared and delivered by the team
effectively.

(Strongly Disagree) 1 2 3 4 ongly Agree)

The team appeared to be better organized and improved since the beginning
of the semester.
(Strongly Disagree) 1 2 3 4 @trongly Agree)

ood Sobks!

175

TEAM EVALUATION AND FEEDBACK FORM
S
mavsanes__ PAN

Please rate the team’s work and presentation by circling the right number.

1.

10.

The demo was complete and included all the new expected functionality for
this iteration,

(Strongly Disagree) 1 2 3 4 @Strongly Agree)
All defects detected and reported to the developers were addressed
cffectively.

(Strongly Disagree) 1 2 3 4 @trongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e. included both basic and alternate flow).
(Strongly Disagree) 1 2 3 4 .5 (Strongly Agtee)

The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators.
(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The interaction diagrams seemed to be complete and presented the message
passing among classes effectively.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The class diagram included all attributes, operations and relationships
among classes,

(Strongly Disagree) 1 2 3 4 @Strongly Agree)

The GUI design was improved and presented-well,
(Strongly Disagree) 1 2 3 4 @trongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system. QZE
(Strongly Disagree) 1 2 3 4 trongly Agree)
The overall presentation was well prepared and delivered by the team
effectively.

(Strongly Disagree) 1 2 3 4 @rongly Agree)
The team appeared to be better organized and improved since the beginning

of the semester.
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

176

TEAM EVALUATION AND FEEDBACK FORM

ITERATION #: %D A M
TEAM NAME; C '

Please rate the team’s work and presentation by civcling the vight number.

1.

10.

The deme was complete and included all the new expected functionality for
this iteration.
(Strongly Disagree) 1 2 3 4 Strongly Agree)

All defects detected and reported to the developers were addressed
effectively &
(Strongly Disagree) 1 2 3 4 5§trongly Agree)

The use case diagram was clearly improved from the previous iteration and
the scenarios were complete (i.e. included both basic and alternate flow).
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The CRC cards for this iteration described effectively all candidate classes
with their responsibilities and collaborators
(Strongly Disagree) 1 2 }Strongly Agree)

The interaction diagrams seemed to be complete and presented the message
passing among classes effectively. N
(Strongly Disagree) 1 2 3 4 \\ j(Strongly Agree}

The class diagram included all attributes, operations and relationships
among classes. \
(Strongly Disagree) | 2 3 4 5 (%trongly Agree)

The GUI design was improved and presented Welld/
(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

The UML design diagrams appear to be accurately mapped to the
implementation (code) of the system. o~
(Strongly Disagree) 1 2 3 4 «ir\ }Strongly Agree)
.
The overall presentation was well prepared and delivered by the team
etfectively. I
(Strongly Disagree) 1 2 3 4 "-\5\/(Str0ngly Agree)

The team appeared (o be better organized and improved since the beginning
of the semester, o
(Strongly Disagree) | 2 3 4 ¢ 5 (Sgrongly Agree)
‘ J

177

Final CRC Cards

These are the final CRC Cards for all iterations with all six controllers and entities.

Customer <Entity>

Responsibility Collaborator

Provide Customer Info
(Name, Phone, Address, Repeat,

ID)
Job <Entity>
Responsibility Collaborator
Store job info Employee
(When, Where, ID, Employees
Assigned)

Invoice <Entity>

Responsibility Collaborator

Store invoice info like customer | Customer, Job
ID, Job ID, and whether it is paid
or not

Employee <Entity>

Responsibility Collaborator
Provide information about
employee
Appointment <Entity>
Responsibility Collaborator
Provide information on the Customer

appointment like date and time

178

Payment <Entity>

Responsibility Collaborator
Provide information on the Customer
payment like customer and
amount

CustomerController <Controller>

Responsibility Collaborator
Add Customer Customer
Load Customer Customer
Check ID if exists Customer
Modify Customer Customer
Delete Customer Customer
Display Customer Customer

EmployeeController <Controller>

Responsibility

Collaborator

Add Employee
Load Employee
Check ID if exists
Modify Employee
Delete Employee
Display Employee

Customer, Employee
Employee
Customer, Employee
Customer, Employee
Employee
Employee

JobController <Controller>

Responsibility

Collaborator

-Add Job

-Load Jobs

-Check to see if ID exists for customer
and employee

-Modify Job

-Delete Job

-Display All Jobs, a Job, or jobs in a
week

-check to see what invoices are
worked on for the week

Customer, Employee, Job, Invoice
Job
Customer, Employee

Customer, Employee, Job, Invoice
Job
Job

Job, Invoice

179

InvoiceController <Controller>

Responsibility

Collaborator

-Add Invoice

-Load Invoice

-Edit Invoices when modifying or
adding Jobs

-Check to see if IDs exist and get IDs
-Apply Payments to Invoices
-Delete Invoice

-Display Invoices As All or One
-Create Invoice ID

Customer, Job, Invoice
Job
Job, Invoice

Customer, Job, Invoice
Customer, Invoice, Job
Invoice
Invoice
Invoice

PaymentController <Controller>

Responsibility

Collaborator

-Add Payment
-Load Payment
-Cancel Payment
-Credit Payment
-Display A Payment

Customer, Payment
Payment
Payment
Payment
Payment

ManagerController <Controller>

Responsibility

Collaborator

-Add Appointment
-Load Schedule
-Display Schedule
-Delete Appointment
-Modify Appointment
-print Weekly Schedule

Customer, Appointment
Appointment
Appointment
Appointment
Customer, Appointment
Appointment

180

Final Use-case Diagram

This is the final use-case diagram that shows all three iterations’ completed work. For a closer

look, please refer to our wiki on Moodle.

Add customer
Vianage C
(M&R)

mers

Il Vodify customer info

<conterd>>, _ _
R -
-~ Display customer info,
Display customer list
Manage Customers
(Manager only) S
“cconand>> _

Delete customer

Manage Employee
(M&R)

B

ccertend>> B Add employee

m——

Vanage Employee
(Manager only) el

[——

Delete employee

Add new job
Manage jobs/appointmen

RN Delete job
Display job info

Display job list w/ completion
anage jobs/appointment® o
(Manager only)

I Display completed job st

N Display pending job list

Reception: Modify job info

Manage customer invoices for one-time jobs

Create new invoice 7

Text file
DB

etz

corerg, 2Ty Cancel invoice

Manage customer invoices for all jobs
(Manager Only)

Modify invoice

Display invoice

Display invoice list
Manage customer payments

Record Payment

Manage customer payment® econend>_
(Manager only) = <conend>

Cancel Payment

Print receipt

- Add new appointinent,

— — ccentent

S—

Cancel Appointment
" cconent___

<conend>>
Save information -

Modify Appointrent

ly schedule

181

