
4/28/2014

Sean Gibbens, Phil Dwyer, Adam Sanders, and Max Brodbeck

TEAM

SPAM
JUST THE JOB: FINAL REPORT

1

Table of Contents

Abstract pg. 3

Chapter 0: Introduction

Problem Statement pg. 4-5

Requirements pg. 6-7

Description of Software Development Process pg. 8

Team Structure and Roles pg. 9

Organization of Report pg. 9

Chapter 1: Project Iteration 1

 Analysis:

 Analysis Domain Model pg. 10

 Requirements:

 Use Case Diagram: All Requirements pg. 11-12

 Use Case Scenarios pg. 13-16

 High-Level Sequence Diagrams pg. 17-22

 CRC Cards pg. 23-24

 High-Level Analysis Class Diagram pg. 25

 Package Diagrams pg. 25

 Design:

 Detailed Class Diagram pg. 26

 Detailed Interaction Diagrams pg. 27-32

 Overall GUI Design pg. 33-38

 Package Diagrams pg. 39

 Implementation:

 Tested Code pg. 40

 Organization using Package Diagrams pg. 40

Chapter 2: Project Iteration 2

 Analysis:

 Analysis Domain Model pg. 41

 Requirements:

 Use Case Diagram: All Requirements pg. 42-43

 Use Case Scenarios pg. 44-52

 High-Level Sequence Diagrams pg. 53-66

 CRC Cards pg. 67-69

 High-Level Analysis Class Diagram pg. 70

 Package Diagrams pg. 70

 Design:

 Detailed Class Diagram pg. 71-76

 Detailed Interaction Diagrams pg. 77-90

 Overall GUI Design pg. 91-105

 Package Diagrams pg. 106-107

 Implementation:

 Tested Code pg. 108

 Organization using Package Diagrams pg. 108

2

Chapter 3: Project Iteration 3

 Static Design Model with Modifications pg. 110-117

 Dynamic Design Model with Modifications pg. 118-129

 GUI Model pg. 130-151

 Discussion on Flexibility of Design pg. 152

 Tested Code added to Existing Code pg. 152

Chapter 4: Conclusions

 Views on Software Development and Engineering pg. 153

 Thoughts on Object-oriented Approach pg. 153

Chapter 5: Team Organization and Roles

 Role and Detailed Contribution of Each Member pg. 154

 Overall Work Division and Execution pg. 154

Appendices pg. 155-181

 Peer Evaluation Forms pg. 155-177

 Final CRC Cards pg. 178-180

 Final Use-case Diagram pg. 181

3

Abstract

 In this project, we were assigned to work on the Just the Job project description located in

our textbook. Throughout the semester this spring, we have worked on three iterations to produce

the software described in the requirements of our project. With this process, we overcame issues

involving learning new subjects and scheduling with team members. As we progressed through

our education of this class, we developed multiple static and dynamic design diagrams that

correlated to our actual code for the software. These diagrams helped our group map and develop

our code by defining our objects in entities, controllers, and boundaries. With our functionality

working for each iteration, we looked into improving our GUI design. This is very noticeable in

the transition from iteration one to iteration two. To complete our analysis, we looked at the

back-end of our software, which we continued to use common separated value (CSV) text files

instead of using an Access database back-end. As a group, we wanted this software to have an

easier transition to a new back-end source. In the end, as a group we feel that our software is

very functional and covers the requirements stated by the project description for Just the Job.

4

Chapter 0: Introduction

Problem Statement:

 Just the Job is a company that provides house cleaning services on a one-off basis, for

example when people move house.

 At the moment, when a potential customer contacts the Just the Job office, the

receptionist books an appointment for the office manager to visit the property to be cleaned and

give the customer a date and price for the job. Once these have been agreed, a booking form is

filled out; one copy of the form is given to the customer and two copies are filed at the Just the

Job office.

 On the date arranged, a team of two or three cleaners arrive at the property and carry out

the cleaning as specified. The customer then signs a copy of the original booking form to

confirm the job has been carried out satisfactorily. When the signed booking form arrives back at

the Just the Job office, the receptionist sends an invoice to the customer for the payment. A

receipted copy of the invoice is sent to the customer when full payment is received.

 Just the Job also deals with customers who require cleaning services on a regular basis.

This cleaning is carried out on the same day each week, and is charged at an hourly rate,

negotiated with the customer. The office manager tries to send the same cleaner each week, as

this helps customer relations.

 Just the Job allocates customer numbers and keeps details on file of all its customers for

marketing purposes. The office also keeps records of all the cleaners, including name, address,

contact number and the number of hours worked each week.

5

 The office manager has decided that she needs a new computer system to handle most of

the paperwork involved in Just the Job’s daily routines.

 The new system must keep a record of customers, cleaners and jobs. The office manager,

Eileen, wants to be able to use the system to produce printed monthly invoices for regular

customers and one-off invoices for single jobs. She would also like the system to produce a

weekly schedule for each cleaner showing where and when they are working. This will be given

to the cleaners at the start of the week along with a copy of the Booking Form for the customer to

complete. The system will also be used to produce a weekly list showing how many hours each

cleaner has worked.

 Invoices for one-off jobs are to be printed and sent out as soon as the signed booking

form is returned to the office. Invoices for regular jobs are to be printed and sent out once a

month. Customers who have regular cleaning jobs on several properties should receive a single

invoice.

 Eileen would also like the system to be able to keep track of her appointments and

produce a printed schedule for her.

6

Requirements

1. Manage customers (R & M)

a. Add a new customer (R)

b. Delete an existing customer (M)

c. Modify information stored about an existing customer (R)

d. Display/print information about an existing customer based on his/her id or name (R)

e. Display/print a list of all customers and their information (R)

2. Manage employee (i.e. cleaner) (M & R)

a. Add a new employee—name, id, address, pay-rate, weekly schedule, etc. (R)

b. Delete an existing employee (M)

c. Display/print information about an existing employee (R)

d. Display/print a list of all employees with their information (R)

e. Modify information stored about an existing employee (R)

3. Manage jobs/appointments (M & R)

a. Add/register a new job (R)

b. Delete/cancel an existing job (M)

c. Display/print the status of a specific job (e.g. job number; address of property, completion

status, by-whom etc.) (R)

d. Display/print a list of all jobs with their completion status (R)

e. Display/print a list of all completed jobs (R)

f. Display/print a list of all pending jobs (R)

g. Modify information stored about an existing job (R)

4. Manage customer invoices for one-time jobs (R & M)

a. Create a new invoice (R)

b. Cancel an existing invoice (M)

c. Modify an existing invoice (R)

d. Display/print an existing invoice (R)

e. Display/print a list of all invoices and their payment status (R)

7

5. Manage customer invoices for regular jobs (R & M)

a. Create a new invoice (R)

b. Cancel an existing invoice (M)

c. Modify an existing invoice (R)

d. Display/print an existing invoice (R)

e. Display/print a list of all invoices for a given week with payment status (R)

6. Manage customer payments (R & M)

a. Record a full payment (R)

b. Cancel/credit a payment (M)

c. Print receipt (R)

7. Maintain manager’s personal weekly schedule (R)

a. Add a new appointment (R)

b. Cancel an existing appointment (R)

c. Modify an existing appointment (R)

d. Print weekly schedule (R)

8. Save information (R & M)

Upon user request, save all data to disk at any time. (This is in addition to the automatic save to

disk which occurs at shutdown)

8

Description of Software Development Process

 We developed our software using the Agile Software Development with three separate

iterations. The first iteration developed basic functionality with only a select number of basic

requirements like add customers, employees, and jobs. This was helpful for our group to handle

as these use cases were the foundation of the software as other entities and use cases branched

from the three basic entities. Also with the first iteration, we basically disregard the GUI as we

rated functionality more important as the front-end. The GUI can also be redone after

functionality is completed. After our first presentation to the class, we reviewed our diagrams

and code with new requirements to add on top of our work. This was very helpful in that we

could diagnose our problems and find solutions before our software and documentation became

too voluminous.

In our second iteration, we added more specific use cases to our basic entities and

developed our GUI to a more recognizable version of what we have now. In our GUI during this

iteration, we added list boxes and buttons with multiple windows including a log-in form. We

also developed our back-end by using our object entities and write to common separated value

(CSV) text files. This was completed during the second iteration as we give our three basic

entities all of their use cases and we could develop a standard save-to-file process. After this

work was completed, we had another presentation to get outside opinions. With these opinions,

we consider the criticism and revised our code and documentation.

In the third iteration, we were asked to branch out with new use cases and entities. Just

like the other two iterations, we reviewed and redeveloped our documentation and code. By

working on chunks of the requirements, we were able to focus on certain tasks and correctly

develop our software. This process also helped us develop a working foundation that was very

simple to add on to our software.

9

Team Structure and Roles

 Our team had a very balanced work format with all four members having the same

experiences in programming. We did not need a leader for our team as everyone held each other

accountable for their parts of the project. Overall, our team worked very efficiently and was able

to find time in our busy schedules to meet as a team to get the work needed completed.

Roles

Sean Gibbens – Diagram Lead

Phil Dwyer – Team/Documentation Lead

Adam Sanders – Code Lead

Max Brodbeck – The Dabbler (worked on everything including diagrams and code)

Organization of Report

 In this report, you will encounter our understanding and development of Unified

Modelling Language (UML) diagrams and the programming language of VB.NET. In the first

chapter, the report describes our first iteration and shows our output from this iteration, which

includes our first diagrams and code. In the second and third chapters, the report describes the

other two iterations and displays our improvements on our diagrams and code from criticism

received during presentations in class. The fourth chapter sums up our thoughts on the project

and software engineering as a whole. In the fifth chapter, the report will explain our more

detailed roles and how we executed these roles as members of Team SPAM. For all of other

documentation including peer evaluation forms please refer to the Appendices at the end of this

report.

10

Chapter 1: Project Iteration 1

Analysis

Analysis Domain Model

Our analysis domain model for Iteration 1 was the most high-level diagram we produced, as it

attempts to model all of the classes in the problem domain in one go. We created this first

domain model based upon the noun analysis and formation of candidate classes. Each conceptual

entity class has a relationship with the other classes, and these connections are meant to outline

the structure for the future code.

Customer <Class>

Name
Address

Job <Class>

Description
Employees involved
Location

Invoice <Class>

Jobs Performed
Amount Owed

Employee <Class>

Name
PayRate
Hour Shifts

Payment <Class>

Amount
Customer

Appointment <Class>

Date
Time
Description

1..*

1

1..*

1..*

1

1

1

1..*

1

1..*

1

1..3

11

Requirements

Use Case Diagram

Note: In this use-case diagram, we covered all requirements for the project. This diagram

contains all completed use cases in green ovals. These completed use cases were our tasks we

focused on Iteration 1. We did not implement the generalization arrow for this iteration as we

were inexperienced with use-case diagrams. The diagram is located on next page. To view the

diagram at closer look, refer to our wiki page on Moodle.

12

Manager

Receptionist

Manage Customers
(M&R)

Manage Employee
(M&R)

Manage jobs/appointments
(M&R)

Manage customer invoices for one-time jobs

Manage customer invoices for regular jobs

Maintain manager's personal weekly schedule

Manage customer payments

Save information

Manage Customers
(Manager only)

Add customer

Delete customer

Modify customer info

Display customer info

Display customer list

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Add employee

Delete employee

Display employee info

Display employee list

Modify employee info

Manage Employee
(Manager only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Add new job

Delete job

Display job info

Display completed job list

Display pending job list

Modify job info

Display job list w/ completion

Manage jobs/appointments
(Manager only)

<<extend>>

<<extend>>
<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Create new invoice

Cancel invoice

Modify invoice

Display invoice

Display invoice list

Record Payment

Cancel Payment

Print receipt

Manage customer invoices for all jobs
(Manager Only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Manage customer payments
(Manager only)

<<extend>>

<<extend>>

<<extend>>

Add new appointment

Modify Appointment

Cancel Appointment

Print weekly schedule

<<extend>>

<<extend>>

<<extend>>

<<extend>>

13

Use Case Scenarios

Use-case: Add a new customer (1.a)

Actor(s): Manager, Receptionist

Goal: To have a manager or receptionist add a new customer into the system

Overview: The manager or receptionist accesses the system. They then enter the “add” section of

the system. Then they go to “add customer” and enter all of the necessary customer info.

Typical course of events:

Actor Action System Response

1. Manger or receptionist accesses system

2. Goes to “add” section

3. Goes to “add customer” section 4. Displays “add customer” form

5. Fills out all necessary information and submits 6. Verifies all info is filled out

 7. Enters customer info system

Alternative courses:

2. User goes to the wrong section. Would have to go back a page and try again. (alternate)

3. User goes to “add job” or “add employee” instead of “add customer”. Requires the user to go

back a page and try again. (alternate)

5. User enters some wrong information about the customer. This will be caught by system in step

6. (alternate)

5. User forgets to submit form. (alternate)

Use-case: Display a list of all customers and their information (1.e)

Actor(s): Manager, Receptionist

Goal: To have a manager or receptionist display a complete list of customers and their

information

Overview: The manager or receptionist accesses the system. They enter the “customer” section

of the system. They then select the “display all” link on this page.

Typical course of events:

Actor Action System Response

1. Manager or receptionist accesses system

2. Goes to “customer” section

3. Clicks on “display all” link 4. Displays list of all customers and info

Alternative courses:

2. User goes to the wrong section. Would have to go back and try again. (alternate)

3. User clicks on the wrong link. Would have to go back and try again. (alternate)

14

Use Case: Add a new employee (2.a)

Actor(s): Receptionist, Manager

Goal: Enter a new employees information into the system. This information includes the

employees name, id, address, weekly schedule, pay-rate, etc.

Overview: The Receptionist or Manager accesses the system. They select the ‘add’ section. They

then select the new employee section, and fill out the form boxes to enter in information about

the employee.

Typical Course of Events:

Actor’s Action System Response

1. The Receptionist or Manger goes to the ‘add’

section.

2. They should then go to the ‘add new employee’ section.

3. They then put that employees information into the

correct sections, and submit it.

4. Verify that all the information has been entered

And the correct number of digits has been entered

correctly, i.e. for a phone number.

The information is saved after it is verified.

Alternatives:

Step 1. They choose the wrong section, and have to return to the home page.

Step 2. They choose a different addition section, such as customer, and will have to return to the

add page.

Step 3,4. They enter information in the wrong field, for example if they were to put an id number

into the name section, the system should catch clearly incorrect information such as this.

Step 3,4. They forget to hit submit, and will have to reenter the information.

15

Use Case: Display a list of all employees with their information (2.d)

Actor(s): Receptionist, Manager

Goal: A list of all employees, including their information, is displayed on the screen.

Overview: The Receptionist or Manager goes to the employee section. They choose the ‘display

all’ link, and a list of all employees with their information is displayed.

Typical Course of Events:

Actor’s Actions System Response

1. The Receptionist or Manger goes to the ‘employee’ section

2. They then select the ‘display all’ link.

3. The system displays a list of

all employees with their information.

Alternative:

Step 1 They choose the wrong section, and have to return to the home page.

Step 2 They choose the wrong link, and must return to the employee section.

Use Case: Add/Register a new job (3.a)

Actor(s): Receptionist, Manager

Goal: Enter a job into the system so that employees can be dispatched to it.

Overview: The Receptionist or Manager accesses the system. They select the ‘add’ section. They

then select the ‘add new job’ section. After that they are taken to a page where they can enter

information such as location and description.

Typical Course of Events:

Actor’s Action System Response

1. The Receptionist or Manger goes to the ‘add’

section.

2. They should then go to the ‘add new job’ section.

3. They then put the proper information about the job into the

System, and then hit submit.

4. The information is saved.

Alternative:

Step 1. They choose the wrong section, and have to return to the home page.

Step 2. They choose a different addition section, such as customer, and will have to return to the

add page.

Step 3,4. They forget to hit submit, and will have to reenter the information.

16

Use Case: Display a list of all jobs with their information (3.d)

Actor(s): Receptionist, Manager

Goal: A list of all jobs, and their completion status, is displayed on the screen.

Overview: The Receptionist or Manager goes to the ‘jobs’ section. They choose the ‘display all’

link, and a list of all jobs with their completion status is displayed.

Typical Course of Events:

Actor Action System Response

1. The Receptionist or Manger goes to the ‘jobs’ section

2. They then select the ‘display all’ link.

3. The system displays a list of

all jobs with their completion status.

Alternative:

Step 1. They choose the wrong section, and have to return to the home page.

Step 2. They choose the wrong link, and must return to the employee section.

17

High Level Sequence Diagrams

This is the High-level Sequence Diagram for Requirement 1a) Add a new customer

18

This is the High-level Sequence Diagram for Requirement 1e) Display/print information about

an existing customer based on his/her id or name

19

This is the High-level Sequence Diagram for Requirement 2a) Add a new employee

20

This is the High-level Sequence Diagram for Requirement 2d) Display/print a list of all

employees with their information

21

This is the High-level Sequence Diagram for Requirement 3a) Add a new job

22

This is the High-level Sequence Diagram for Requirement 3d) Display/print a list of all jobs with

their completion status

23

CRC Cards

Note:

We did not use entity classes in our first iteration, so the only classes that were implemented

were boundary and controller classes that wrote directly to the appropriate text file. The

following CRC Cards are our Iteration 1 Controller classes.

Add Customer <Controller>

Responsibility Collaborator

-Add Customer to an

appropriate text file with

customer attributes like ID,

Address, and Name of

Customer.

Display Customers <Controller>

Responsibility Collaborator

-Display all customers that

were added to the text file by

the Add Customer Controller.

Add Employee <Controller>

Responsibility Collaborator

-Add employee to an

appropriate text file with

employee attributes like hours

for the week, ID, and pay

rate.

24

Display Employee <Controller>

Responsibility Collaborator

-Display all employees that

were added to the text file by

the Add Employee Controller.

Add Job <Controller>

Responsibility Collaborator

-Add Job to an appropriate

text file with job attributes

like ID, Date, and Description

of Job.

Display Job <Controller>

Responsibility Collaborator

-Display all jobs that were

added to the text file by the

Add Job Controller.

25

High-Level Analysis Class Diagram

At this point in Iteration 1, we did not develop a full analysis class diagram that included all

necessary boundaries, controllers, and entities. For a high-level class diagram modeling the fully

functioning system, covering all requirements, please see our Iteration 1 domain model.

Package Diagrams for Requirements

Because we did not have a complete analysis class diagram at this point in Iteration 1, we could

not organize all of our classes in package form. For a package diagram covering all of the

requirements from Iteration 1, please see our Iteration 1 design package diagram.

26

Design

Detailed Design Class Diagram

Our detailed class diagram for Iteration 1 is two-layered. The first layer is composed of our

boundary classes, each of which has links to the corresponding forms. The bottom-most layer of

boundaries has buttons which trigger the controllers. Notice the separate controller classes used

for each individual function, as we consolidate these in future iterations. For a closer look at this

diagram, please see our Wiki.

AddCustomer <Controller>

+AddCust()

AddEmployee <Controller>

+AddEmp()

AddJob <Controller>

+AddJob()

LoginForm1 <Boundary>

-btnOk_Click()
-btnCancel_Click()

Home <Boundary>

-lnkAdd_LinkClicked()
-lnkCustomer_LinkClicked()
-lnkEmployees_LinkClicked()
-lnkJobs_LinkClicked()

CustomerUI <Boundary>

-lnkHome_LinkClicked()
-btnDisplay_Clicked()

EmpUI <Boundary>

-lnkHome_LinkClicked()
-btnDisplay_Clicked()

JobsUI <Boundary>

-lnkHome_LinkClicked()
-btnDisplay_Clicked()

AddCustomer <Boundary>

-objAddCus: AddCustomer

-btnSubmit_Clicked()

JobList <Boundary>

-objJobController: DisplayJob

-btnDisplayLastJob_Clicked()
-btnDisplayNextJob_Clicked()

CustomerList <Boundary>

-objCusController: DisplayCustomers

-btnDisplayLastSix_Clicked()
-btnDisplayNextSix_Clicked()

AddEmployee <Boundary>

-objAddEmp: AddEmployee

-btnSubmit_Clicked()

EmpList <Boundary>

-objEmpController: DisplayEmployee

-btnDisplayLastThree_Clicked()
-btnDisplayNextThree_Clicked()

AddJob <Boundary>

-objAddJob: Controller

-btnSubmit_Clicked()

DisplayCustomers <Controller>

+DisplayCustomers()

DisplayEmployee <Controller>

+DisplayEmployees()

DisplayJob <Controller>

+DisplayJobs()

AddUI <Boundary>

-lnkAddCustomer_LinkClicked()
-lnkAddEmployee_LinkClicked()
-lnkAddJob_LinkClicked()

1
1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1 1 1

1

1

1
1

1
1

1

111

27

Detailed Interaction Diagrams

This is a detailed sequence diagram for 1a) Add a new customer

28

This is a detailed sequence diagram for 1e) Display/print information about an existing customer

based on his/her id or name

29

This is a detailed sequence diagram for 2a) Add a new employee

30

This is a detailed sequence diagram for 2d) Display/print information about an existing employee

31

This is a detailed sequence diagram for 3a) Add a new job

32

This is a detailed sequence diagram for 3d) Display/print a list of all jobs with their completion

status

33

Overall Design for GUI

This is where a user logins in

Home Menu

This is where a user navigates the system

34

Add Page

A user would go here to add anything

Add Customer Page

This is the form where you add a customer

35

Add Employee Page

This is the form where a user adds an employee

Add Job Page

This is the form where a user adds a job

36

Customer Page

This is where a user would display the customers

Customer List Page

This is the page where the customers are displayed

37

Employee Page

This is the page where the employee would go to see all the employees

Employee List Page

This is the page where the employees are displayed

38

Jobs Page

This is the page where a user would find the jobs to display

Jobs List Page

This is the page where the jobs are displayed

39

Package Diagrams for Design Organization

The package diagram below shows how our classes were organized (i.e. by class type). The top

folder contains all of our boundary classes, which points to the second layer of controller classes.

This boundary to controller relationship was all that we implemented in Iteration 1, and the

packaging reflects that. For a closer look at this diagram, please check Iteration 1 package

diagram on our Google Drive

AddCustomer <Controller> AddEmployee <Controller> AddJob <Controller>

LoginForm1 <Boundary> Home <Boundary>

CustomerUI <Boundary> EmpUI <Boundary> JobsUI <Boundary>

AddCustomer <Boundary>

JobList <Boundary>EmpList <Boundary>CustomerList <Boundary>

AddEmployee <Boundary> AddJob <Boundary>

AddUI <Boundary>

DisplayCustomers <Controller> DisplayEmployee <Controller> DisplayJob <Controller>

40

Implementation

Tested Code

We do not have our tested code from this iteration because we used the same Visual Basic file,

overwriting the old code with our updated code. It is important to note that in this iteration, we

did not implement entity classes. Entity classes were not needed because our lists held all of the

information associated with each class. In general, our code was modeled in parallel with our

design package diagram and design class diagram from this iteration, both of which were

previously listed.

Package Diagrams for Code Organization

Our package diagram for Code Organization is identical to our design package diagram. See

Iteration 1 design package diagram.

41

Chapter 2: Project Iteration 2

Analysis

Analysis Domain Model

Our analysis domain model for Iteration 2 was very similar to our model from Iteration 1. There

were not many changes needed because we still had a good plan for how our classes were going

to interact. One modification we did make was an addition of a Manager class. Although we did

not implement the Manager as a class in our final code, we still added the Manager class to the

model for design purposes.

Customer <Class>

Name
Address

Job <Class>

Description
Employees involved
Location

Invoice <Class>

Jobs Performed
Amount Owed

Employee <Class>

Name
PayRate
Hour Shifts

Payment <Class>

Amount
Customer

Appointment <Class>

Date
Time
Description

1..*

1

1..*

1..*

1

1

1

1..*

1

1..*

1

1..3

Manager <Class>

Name

1

0..*

42

Requirements

Use-Case Diagram

Note: In iteration 2, we improved our use-case diagram greatly by adding the generalization for

our two actors. This reduced the amount of lines and confusion of our diagram as the manager

does everything the receptionist can do and more. Also, we updated our completed use cases to

match our progress so far in the project and correlates directly with the software. The last update

to this use-case diagram is the addition of the back end of writing to a text file. In our final use-

case diagram, the only update is the completion of all requirements. To view the diagram at

closer look, refer to our wiki page on Moodle.

43

Manager

Receptionist

Manage Customers
(M&R)

Manage Employee
(M&R)

Manage jobs/appointments
(M&R)

Manage customer invoices for one-time jobs

Manage customer invoices for regular jobs

Maintain manager's personal weekly schedule

Manage customer payments

Save information

Manage Customers
(Manager only)

Add customer

Delete customer

Modify customer info

Display customer info

Display customer list

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Add employee

Delete employee

Display employee info

Display employee list

Modify employee info

Manage Employee
(Manager only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Add new job

Delete job

Display job info

Display completed job list

Display pending job list

Modify job info

Display job list w/ completion

Manage jobs/appointments
(Manager only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Create new invoice

Cancel invoice

Modify invoice

Display invoice

Display invoice list

Record Payment

Cancel Payment

Print receipt

Manage customer invoices for all jobs
(Manager Only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Manage customer payments
(Manager only) <<extend>>

<<extend>>

<<extend>>

Add new appointment

Modify Appointment

Cancel Appointment

Print weekly schedule

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Text file
DB

44

Use Case Scenarios

Use Case: Delete existing Customer (1.b)

Actor(s): Manager

Goal: Remove an existing customer from the database

Overview: The manager should be able to remove the data about an existing customer if it is no

longer needed.

Typical Course of Events:

Actor Action System Response

1. The manager logs into the system 2. The system checks the credentials

3. They then go to the Customer section

4. They then choose the delete customer link

5. They choose which customer to delete 6. The chosen customer is removed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Customer section; they will have to return to the home

page.

4. They choose a different link on the Customer page, they will have to return to the customer.

5. They chose an invalid customer to remove, and are notified that they have done so and will

then have to enter valid information.

45

Use Case: Modify information about an existing customer (1.c)

Actor(s): Receptionist, Manager

Goal: Edit the information stored about an existing customer

Overview: The manager/receptionist should be able to choose a customer, and then edit

information about them.

Typical Course of Events:

Actor Action System Response

1. They log in 2. The System checks their credentials

3. They then go to the Customer page

4. They then choose the modify customer option

5. They choose which customer to modify, and change

whatever information they want 6. These changes are saved to the

 database.

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Customer section; they will have to return to the home

page.

4. They choose a different link on the Customer page, they will have to return to the customer.

5. They choose an invalid customer to modify, they will be notified. They will then have to

choose a correct customer.

46

Use Case: Display/print information about an existing customer based on his/her id or

name (1.d)

Actor(s): Receptionist, Manager

Goal: Display /print information about an existing customer using their id or name

Overview: After choosing a customer by entering their name or id, all of that specific customer’s

information should be displayed.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated.

3. They go to the customer page

4. They then go to the display page.

5. They choose the display individual option,

and enter a name or id. 6. The system displays the correct

 customer.

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Customer section; they will have to return to the home

page.

4. They choose a different link on the Customer page, they will have to return to the customer

page.

5. They enter an invalid name or id, they will be prompted that they have done so. They should

then enter the correct information.

47

Use Case: Delete an existing employee (2.b)

Actor(s): Manager

Goal: Remove an existing employee from the database

Overview: The manager has the option to delete an employee from the database.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated.

3. They go to the employee page

4. They choose the delete employee option

5. They then choose the employee to delete

6. The system the removes that

employee from the database

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Employee section; they will have to return to the home

page.

4. They choose a different link on the Employee page, they will have to return to the employee

page.

5. They choose an invalid employee, they are prompted that they have done so. They then can

enter the correct information.

Use Case: Display print information about an existing employee (2.c)

Actor(s): Receptionist, Manager

Goal: Display the information about an existing employee

Overview: The manager/receptionist choose a specific employee, and the system displays their

information.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the employee page

4. They choose the Display employees link

5. They choose the display individual option,

and indicate which employee they want

 6. Their information is displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Employee section; they will have to return to the home

page.

4. They choose a different link on the Employee page, they will have to return to the employee

page.

5. They choose an invalid employee, they are prompted that they have done so. They then can

enter the correct information.

48

Use Case: Delete/Cancel Job(3.b)

Actor(s): Manager

Goal: Delete a job form the database that has been cancelled.

Overview: The manager can choose a job to remove form the database.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Job page

4. They choose the delete job link

5. They choose a job they would like to be deleted 6. The job is removed from the database

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Job section; they will have to return to the home page.

4. They choose a different link on the Job page, they will have to return to the Job page.

5. They choose an invalid job, they are prompted that they have done so. They then can enter the

correct information.

Use Case: Print the status of a job (3.c)

Actor(s): Receptionist, Manager

Goal: Display the status of job

Overview: The Receptionist/Manager should be able to choose a job and see its completion

status.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Jobs page

4. They go to the Display Jobs page

5. They choose the individual option, and 6. The information is displayed.

then choose a job to display.

Alternative courses:

1-2. They provide incorrect information and will have to reattempt

3. They go to a section different than the Job section; they will have to return to the home page.

4. They choose a different link on the Job page, they will have to return to the Job page.

5. They choose an invalid job, they are prompted that they have done so. They then can enter the

correct information.

49

Use Case: Display/print a list of all completed jobs (3.e)

Actor(s): Receptionist, Manager

Goal: To display the list of completed jobs in the system

Overview: The receptionist/manager should be able to enter the system and display the list of all

completed jobs

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Jobs page

4. They go to the Display Jobs page

5. They choose to display jobs by completion 6. The completed jobs are displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Job section; they will have to return to the home page.

4. They choose a different link on the Job page, they will have to return to the Job page.

Use Case: Display/print a list of all pending jobs (3.f)

Actor(s): Receptionist, Manager

Goal: To display a list of all pending jobs in the system

Overview: The receptionist/manager should be able to enter the system and display a list of all

pending jobs

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Jobs page

4. They go to the Display Jobs page

5. They choose to display jobs by pending status 6. The pending jobs are displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Job section; they will have to return to the home page.

4. They choose a different link on the Job page, they will have to return to the Job page.

50

Use Case: Create a new invoice (4.a)

Actor(s): Receptionist, Manager

Goal: To create a new invoice and put it in the database

Overview: The receptionist/manager should be able to access the system and create a new

invoice.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They choose to create new invoice

5. All of the invoice information is entered

6. The invoice is saved 7. The invoice is entered into the system

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home

page.

Use Case: Cancel an existing invoice (4.b)

Actor(s): Manager

Goal: To cancel an existing invoice

Overview: The manager should be able to access the system and cancel an existing invoice in the

system.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They search for a specific invoice by ID

5. They choose to cancel the invoice 6. The invoice is cancelled

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home

page.

4. The wrong Invoice ID is entered. They can always search again.

51

Use Case: Modify an existing invoice (4.c)

Actor(s): Receptionist, Manager

Goal: To modify the info in a current invoice

Overview: The receptionist/manager should be able to access the system and modify the

information in an existing invoice.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They search for an invoice by ID

5. They choose to edit the invoice

6. They enter the new info and save 7. The invoice is re-entered into the system

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home

page.

4. The wrong Invoice ID is entered. They can always search again.

Use Case: Display/print an existing invoice (4.d)

Actor(s): Receptionist, Manager

Goal: To display an individual existing invoice

Overview: The receptionist/manager should be able to access the system and display or print an

existing invoice.

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They search for an Invoice by ID

5. They choose to print/display Invoice 6. Invoice is displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home

page.

4. The wrong Invoice ID is entered. They can always search again.

52

Use Case: Display/print a list of all invoices and their payment status (4.e)

Actor(s): Receptionist, Manager

Goal: To display a list of all invoices, along with their payment status

Overview: The receptionist/manager should be able to access the system and display a full list of

invoices and their payment status

Typical Course of Events:

Actor Action System Response

1. They log in 2. Their credentials are validated

3. They go to the Invoice page

4. They choose to display all invoices 5. All invoices are displayed

Alternative courses:

1-2. They provide incorrect information and will have to reattempt.

3. They go to a section different than the Invoice section; they will have to return to the home

page.

53

High-Level Sequence Diagram

This is the High-level Sequence Diagram for Requirement 1b) Delete an existing customer

54

This is the High-level Sequence Diagram for Requirement 1c) Modify information stored about

an existing customer

55

This is the High-level Sequence Diagram for 1d) Display/print information about an existing

customer based on his/her id or name

56

This is the High-level Sequence Diagram for 2b) Delete an existing employee

57

This is the High-level Sequence Diagram for 2c) Display/print information about an existing

employee

58

This is the High-level Sequence Diagram for 3b) Delete/cancel an existing job

59

This is the High-level Sequence Diagram for 3c) Display/print the status of a specific job

60

This is the High-level Sequence Diagram for 3e) Display/print a list of all completed jobs

61

This is the High-level Sequence Diagram for 3f) Display/print a list of all pending jobs

62

This is the High-level Sequence Diagram for 4a) Create a new invoice

63

This is the High-level Sequence Diagram for 4b) Cancel an existing invoice

64

This is the High-level Sequence Diagram for 4c) Modify an existing invoice

65

This is the High-level Sequence Diagram for 4d) Display/print an existing invoice

66

This is the High-level Sequence Diagram for 4e) Display/print a list of all invoices and their

payment status

67

CRC Cards

Note:

In this iteration, we developed our back end of our software by including our entities, so that we

could write objects to the text files and add objects to list boxes. Also, we redesigned our

controller classes to more generic controllers with more functions for a single entity.

Customer <Entity>

Responsibility Collaborator

Provide Customer Info
(Name, Phone, Address, Repeat,
ID)

Job <Entity>

Responsibility Collaborator

Store job info
(When, Where, ID, Employees
Assigned)

Employee

Invoice <Entity>

Responsibility Collaborator

Store invoice info like customer
ID, Job ID, and whether it is paid
or not

Customer, Job

Employee <Entity>

Responsibility Collaborator

Provide information about
employee

68

CustomerController <Controller>

Responsibility Collaborator

Add Customer
Load Customer
Check ID if exists
Modify Customer
Delete Customer
Display Customer

Customer
Customer
Customer
Customer
Customer
Customer

EmployeeController <Controller>

Responsibility Collaborator

Add Employee
Load Employee
Check ID if exists
Modify Employee
Delete Employee
Display Employee

Customer, Employee
Employee
Customer, Employee
Customer, Employee
Employee
Employee

69

InvoiceController <Controller>

Responsibility Collaborator

-Add Invoice
-Load Invoice
-Edit Invoices when modifying or adding
Jobs
-Check to see if IDs exist and get IDs
-Apply Payments to Invoices
-Delete Invoice
-Display Invoices As All or One
-Create Invoice ID

Customer, Job, Invoice
Job
Job, Invoice

Customer, Job, Invoice
Customer, Invoice, Job
Invoice
Invoice
Invoice

JobController <Controller>

Responsibility Collaborator

-Add Job
-Load Jobs
-Check to see if ID exists for customer and
employee
-Modify Job
-Delete Job
-Display All Jobs, a Job, or jobs in a week
-check to see what invoices are worked on
for the week

Customer, Employee, Job, Invoice
Job
Customer, Employee

Customer, Employee, Job, Invoice
Job
Job

Job, Invoice

70

High-Level Analysis Class Diagram

At this point in Iteration 2, we did not develop a full analysis class diagram that included all

necessary boundaries, controllers, and entities. However, our detailed class diagram (shown on

the next page) for this iteration does show all necessary boundaries, controllers, and entities up to

this point.

Package Diagrams for Requirements

Because we did not have a complete analysis class diagram at this point in Iteration 1, we could

not organize all of our classes in package form. For a package diagram covering all of the

requirements from Iteration 2, please see our Iteration 2 design package diagram.

71

Design

Detailed Design Class Diagram

Our detailed class diagram for Iteration 2 is broken up over the next 5 pages. For a complete look

at our full class diagram, please refer to our Wiki. The first class posted is our Display and Save

system class. This class is instantiated throughout our controllers, as information is displayed and

saved automatically in a majority of our List Boxes. Our outer boundaries are the first few forms

that the user encounters, and much GUI design went into those forms. From there, the diagram is

broken down by entity class, showing all three layers of the architecture.

System Class

DisplayandSave <System>

+SubmitCust()
+DisplayCust()
+LoadCust()
+deleteCust()
+SubmitEmp()
+DisplayEmp()
+LoadEmp()
+deleteEmp()
+SubmitJob()
+DisplayJob()
+LoadJob()
+DeleteJob()
+SubmitInvoice()
+DisplayInvoice()
+LoadInvoice()
+DeleteInvoice()

72

Outer Boundaries

LoginForm1 <Boundary>

-OK_Click()
-Cancel_Click()

HomeUI <Boundary>

-btnExit_Click()
-btnCustomer_Click()
-btnEmployees_Click()
-btnJobs_Click()
-btnInvoice_Click()

CustomerUI <Boundary>

-objCustController : CustomerController

-Customer_Load()
-lnkHomeC_LinkClicked()
-btnAddCustomer_Click()
-btnDisplayCust_Click()
-btnModify_Click()
-btnDelete_Click()
-btnDisplayOne_Click()

EmpUI <Boundary>

-objEmpController: EmployeeController

-EmpUI_Load()
-lnkHomeEMP_LinkClicked()
-btnAddEmp_Click()
-btnDisplayEmps_Click()
-btnModifyEmployee_Click()
-btnDeleteEmployee_Click()
-btnDisplayOne_Click()

JobsUI <Boundary>

-objJobController: JobController
-objEmpController: EmployeeController
-objCustController: CustomerController
-objInvoiceController: InvoiceController

-lnkHomeJ_LinkClicked()
-JobsUI_Load()
-btnAddJob_Click()
-btnDisplayJob_Click()
-btnDeleteJob_Click()
-btnModifyJob_Click()
-btnDisplayPendJobs_Click()
-btnDisplayCompJobs_Click()
-btnDisplaySpecificJob_Click()

InvoiceUI <Boundary>

-objInvController: InvoiceController

-lnkHomeI_LinkClicked()
-InvoiceUI_Load()
-btnAddInvoice_Click()
-btnDeleteInvoice_Click()
-btnModifyInvoice_Click()
-btnDisplayAll_Click()
-btnDisplayPaidInvoices_Click()
-btnDisplayUnpaidInvoices_Click()
-btnDisplayOne_Click()

1

1

11 1

1

1

73

Customer Classes

CustomerUI <Boundary>

-objCustController : CustomerController

-Customer_Load()
-lnkHomeC_LinkClicked()
-btnAddCustomer_Click()
-btnDisplayCust_Click()
-btnModify_Click()
-btnDelete_Click()
-btnDisplayOne_Click()

AddCustomerUI <Boundary>

-objAddCust: CustomerController

-AddCustomerUI_Load()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayCust <Boundary>

-DisplayCust_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteCust <Boundary>

-DeleteCust_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyCust <Boundary>

-ModifyCust_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddCustomer <Boundary>

-objAddCust: CustomerController
+strDelete: String

-ModifyAddCustomer_Load()
+New()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

CustomerController <Controller>

+Customers: List(Of Customer)

+AddCust()
+LoadCust()
+CheckExists()
+ModifyCust()
+DeleteCust()
+DisplayCust()

Customer <Entity>

-custType: String
-custName: String
-custPhoneNumber: String
-custAddress: String
-custID: String

+Get/Set custType
+Get/Set custName
+Get/Set custPhoneNumber
+Get/Set custAddress
+Get/Set custID

1
1

1 1
1

1
1

1

1

1

0..*

1

74

Employee Classes

EmpUI <Boundary>

-objEmpController: EmployeeController

-EmpUI_Load()
-lnkHomeEMP_LinkClicked()
-btnAddEmp_Click()
-btnDisplayEmps_Click()
-btnModifyEmployee_Click()
-btnDeleteEmployee_Click()
-btnDisplayOne_Click()

AddEmployeeUI <Boundary>

-objAddEmp: EmployeeController

-AddEmployeeUI_Load()
-btnSubmitEmp_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayEmp <Boundary>

-DisplayEmp_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteEmp <Boundary>

-DeleteCust_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyEmp <Boundary>

-ModifyEmp_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddEmployee <Boundary>

-objAddEmp: EmployeeController
+strDelete: String

-ModifyAddEmployee_Load()
+New()
-btnSubmitEmp_Click()
-btnClear_Click()
-btnCancel_Click()

EmployeeController <Controller>

+Employees: List(Of Employee)

+AddEmp()
+LoadEmp()
+CheckExists()
+ModifyEmp()
+DeleteEmp()
+DisplayEmp()

Employee <Entity>

-empName: String
-empAddress: String
-empPayRate: String
-empID: String
-schMon: String
-schTues: String
-schWed: String
-schThurs: String
-schFri: String
-schSat: String
-schSun: String

+Get/Set empName
+Get/Set empAddress
+Get/Set empPayRate
+Get/Set empID
+Get/Set schMon
+Get/Set schTues
+Get/Set schWed
+Get/Set schThurs
+Get/Set schFri
+Get/Set schSat
+Get/Set schSun

1 1

1

1

1
1

1
1

1

1

1

1

0..*

75

Jobs Classes

JobsUI <Boundary>

-objJobController: JobController
-objEmpController: EmployeeController
-objCustController: CustomerController
-objInvoiceController: InvoiceController

-lnkHomeJ_LinkClicked()
-JobsUI_Load()
-btnAddJob_Click()
-btnDisplayJob_Click()
-btnDeleteJob_Click()
-btnModifyJob_Click()
-btnDisplayPendJobs_Click()
-btnDisplayCompJobs_Click()
-btnDisplaySpecificJob_Click()

AddJobUI <Boundary>

-objAddJobs: JobController

-AddJobUI_Load()
-btnSubmitJob_Click()
-btnClear_Click()
-btnCancel_Click()

DisplaySpecificJob <Boundary>

-DisplaySpecificJob_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteJob <Boundary>

-DeleteJob_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyJobUI <Boundary>

-ModifyJobUI_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddJob <Boundary>

-objAddJobs: JobController
+strDelete: String
+strID: String

-ModifyAddJob_Load()
+New()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayCompletedJobsUI
<Boundary>

-objJobControl: JobController

-DisplayCompletedJobs_Load()
-btnClose_Click()

DisplayPendingJobsUI <Boundary>

-objJobControl: JobController

-DisplayPendingJobsUI_Load()
-btnClose_Click()

JobController <Controller>

+Jobs: List(Of Job)

+AddJob()
+LoadJob()
+CheckExists()
+ModifyJob()
+DeleteJob()
+DisplayJobs()
+DisplayJob()

Job <Entity>

-jobLocation: String
-jobDescription: String
-jobID: String
-jobStatus: String
-empOne: String
-empTwo: String
-empThree: String
-CustID: String

+Get/Set jobLocation
+Get/Set jobDescription
+Get/Set jobID
+Get/Set jobStatus
+Get/Set empOne
+Get/Set empTwo
+Get/Set empThree
+Get/Set CustID

1
1

1
1 1 1

1

1

11

1

1

1

1

1

0..*

76

Invoice Classes

InvoiceUI <Boundary>

-objInvController: InvoiceController

-lnkHomeI_LinkClicked()
-InvoiceUI_Load()
-btnAddInvoice_Click()
-btnDeleteInvoice_Click()
-btnModifyInvoice_Click()
-btnDisplayAll_Click()
-btnDisplayPaidInvoices_Click()
-btnDisplayUnpaidInvoices_Click()
-btnDisplayOne_Click()

AddInvoiceUI <Boundary>

-objAddInvoice: InvoiceController

-AddInvoiceUI_Load()
-btnSubmitInvoice_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayOne <Boundary>

-objInvoiceController: InvoiceController

-DisplayOne_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteInvoice <Boundary>

-DeleteInvoice_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyInvoice <Boundary>

-ModifyInvoice_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddInvoice <Boundary>

-objAddInv: InvoiceController
+strInvID: String

-ModifyAddInvoice_Load()
+New()
-btnSubmitInvoice_Click()
-btnClear_Click()
-btnCancel_Click()

PaidInvoices <Boundary>

-objInvControl: InvoiceController

-PaidInvoices_Load()
-btnClose_Click()

UnpaidInvoices <Boundary>

-objInvControl: InvoiceController

-UnpaidInvoices_Load()
-btnClose_Click()

InvoiceController <Controller>

-Invoices: List(Of Invoice)

+AddInvoice()
+LoadInvoice()
+MakeID()
+DisplayOne()
+DisplayInvs()
+ModifyInvoice()
+CheckExists()
+DeleteInvoice()

Invoice <Entity>

-invoiceID: String
-jobID: String
-custID: String
-paidStatus: Boolean
-amount: String
-Location: String
-Description: String

+Get/Set invoiceID
+Get/Set jobID
+Get/Set custID
+Get/Set paidStatus
+Get/Set amount
+Get/Set Location
+Get/Set Description

1
1

1

1 1
1

1

1

11

1

1

1

1 1

1

0..*

77

Interaction Diagrams

This is a detailed sequence diagram for 1b) Delete an existing customer

78

This is a detailed sequence diagram for 1c) Modify information about an existing customer

79

This is a detailed sequence diagram for 1d) Display/print information about an existing customer

based of his/her id or name

80

This is a detailed sequence diagram for 2b) Delete an existing employee

81

This is a detailed sequence diagram for 2c) Display/print information about an existing employee

82

This is a detailed sequence diagram for 3b) Delete/cancel an existing job

83

This is a detailed sequence diagram for 3c) Display/print the status of a specific job

84

This is a detailed sequence diagram for 3e) Display a list of all completed jobs

85

This is a detailed sequence diagram for 3f) Display a list of all pending jobs

86

This is a detailed sequence diagram for 4a) Create a new invoice

87

This is a detailed sequence diagram for 4b) Cancel an existing invoice

88

This is a detailed sequence diagram for 4c) Modify an existing invoice

89

This is a detailed sequence diagram for 4d) Display/print an existing invoice

90

This is a detailed sequence diagram for 4e) Display a list of all invoices and their payment status

91

Overall Design for GUI

Login Page

This is where a user logs in

Home Page

This is where a user navigates to the various categories

92

Customers Page

This is where a user sees all the customers and performs various requirements to customers

Adds Customer Page

This is the form to add a customer

93

Modify Customer Search Page

This is where a user searches for the customer he wants to modify

Modify a Customer Page

This is where the user modifies a customer’s info

94

Delete Customer Search Page

This is where the user searches for the customer they want to delete

Display Customer Search Page

This is where a user searches for a specific customer to display

95

Employee Page

This is where a user sees all the employees and performs various requirements to employees

Add Employee Page

This is where a user adds an employee

96

Delete Employee Search Page

This is where a user searches for an employee to delete

Modify Employee Search Page

This is where a user searches for an employee to delete

97

Modify Employee Page

This is where a user modifies an employee’s info

Display an Employee Search Page

This is where the user searches for an employee to display

98

Jobs Page

This is where a user sees all the jobs and performs various requirements to jobs

Add a Job Page

This is where a user adds a job

99

Delete Job Search

This is where a user searches for a job to delete

Display Completed Jobs Page

This is where a user looks at the completed jobs

100

Pending Jobs Page

This is where a user looks at jobs not completed

Modify a Job Search Page

This is where a user goes to search for a job to modify

101

Modify a Job Page

This is where a user modifies a job

Display a Specific Job Search Page

This is where a user searches for a specific job to display

102

Invoice Page

This is where a user sees all the invoices and performs various requirements to invoices

Add an Invoice Page

This is where a user adds an invoice

103

Delete an Invoice Search Page

This is where a user searches for an invoice to delete

Display the Paid Invoices Page

This is where a user views the paid invoices

104

Modify an Invoice Search Page

This is where a user searches for an invoice to modify

Modify an Invoice Page

This is where a user modifies an invoice

105

Unpaid Invoices Page

This is where a user views the unpaid invoices

Display an Invoice Search Page

This is where a user searches for a specific invoice to display

106

Package Diagrams for Design Organization

Our package diagram for Iteration 2 contains four different folders, to organize the types of

classes that we implemented in the code. The layering of packages maps 100% to our class

diagram shown above. The first folder contains all of our boundary classes, as they are the forms

and GUIs the users are interacting with on the front-end. In the middle are our Controller and

System folders. These middle packages are where all of the logic takes place, whether it deals

with the lists of entities or the displaying and saving of files. The bottom package contains all of

our entity classes as they are the back-end classes, those that are written to and read from the text

files. Please see our diagram on the next page.

107

Customer <Entity> Employee <Entity>

Job <Entity> Invoice <Entity>

CustomerController <Controller> EmployeeController <Controller>

JobController <Controller> InvoiceController <Controller>

LoginForm1 <Boundary> HomeUI <Boundary>

CustomerUI <Boundary> EmpUI <Boundary> JobsUI <Boundary> InvoiceUI <Boundary>

AddCustomerUI <Boundary> DisplayCust <Boundary> DeleteCust <Boundary> ModifyCust <Boundary>

ModifyAddCustomer <Boundary> AddEmployeeUI <Boundary> DisplayEmp <Boundary> ModifyEmp <Boundary>

ModifyAddEmployee <Boundary> DeleteEmp <Boundary> AddJobUI <Boundary> DisplaySpecificJob <Boundary>

DeleteJob <Boundary> ModifyJobUI <Boundary> ModifyAddJob <Boundary> DisplayCompletedJobsUI
<Boundary>

DisplayPendingJobsUI <Boundary> AddInvoiceUI <Boundary> DisplayOne <Boundary> DeleteInvoice <Boundary>

ModifyInvoice <Boundary> ModifyAddInvoice <Boundary> PaidInvoices <Boundary> UnpaidInvoices <Boundary>

DisplayandSave <System>

108

Implementation

Tested Code

We do not have our tested code from this iteration because we used the same Visual Basic file,

overwriting the old code with our updated code. It is important to note that in this iteration, we

did implement entity classes. Our code took huge strides in this iteration, as we added new forms

to accommodate for the new functionality, consolidated our controllers, and created entities to

hold our attribute information. In general, our code was modeled in parallel with our design

package diagram above.

Package Diagrams for Implementation Organization

Because we do not have our tested code from this iteration, we do not have a package diagram

for our implemented code. At this point in Iteration 2 our design package diagram was mapped

100% to our code, so please refer to our design package diagram above.

109

Chapter 3: Project Iteration 3

Brief Description of Work

In Iteration 3 we were asked to design and implement requirements 5a-e, 6a-c, and 7a-d.

Requirement 5 is managing customer invoices for regular jobs, which means we had to modify

the job code slightly to accommodate for one-time and regular jobs. Requirement 6 is managing

customer payments, so we had to create new classes that allowed for the addition of payments.

These payments directly interact with invoices because once an invoice has received enough

payments, it is marked as paid. Requirement 7 is maintaining the manager’s personal weekly

schedule, so we had to implement that functionality through another entity class. The addition of

these classes was an easy transition to make, as we kept the same architecture of classes from

past iterations. The final requirement we handled in this iteration was differentiating between

manager and receptionist logins. In the first two iterations the receptionist could make deletions

throughout the system, and we wanted to disallow this.

110

Static Design Model

Final Class Diagram

Once we reached Iteration 3, our final class diagram took shape and we had a structure we were

pleased with. Only a few things changed in our class diagram from Iteration 2 to Iteration 3, one

being the addition of start and end date attributes to our Job class, and also the addition of

support classes for our new two entity classes, Payment and Appointment. There were also slight

modifications made in the System class, to accommodate for our new entities. To see our full

class diagram with all associations, please see our Wiki.

System Class

DisplayandSave <System>

+SubmitCust()
+DisplayCust()
+LoadCust()
+deleteCust()
+SubmitEmp()
+DisplayEmp()
+LoadEmp()
+deleteEmp()
+SubmitJob()
+DisplayJob()
+LoadJob()
+DeleteJob()
+SubmitInvoice()
+DisplayInvoice()
+LoadInvoice()
+DeleteInvoice()
+SubmitPayment()
+LoadPayments()
+DisplayPayments()
+DeletePayment()
+SubmitAppointment()
+LoadAppointments()
+DeleteAppointment()

111

Outer Boundaries

LoginForm1 <Boundary>

-strUser: String

-LoginForm1_Load()
-OK_Click()
-Cancel_Click()
+Get/Set strUser

HomeUI <Boundary>

-HomeUI_Load()
-btnExit_Click()
-btnCustomer_Click()
-btnEmployees_Click()
-btnJobs_Click()
-btnInvoice_Click()
-btnPayment_Click()
-btnScheduleManager_Click()

CustomerUI <Boundary>

-objCustController : CustomerController

-Customer_Load()
-lnkHomeC_LinkClicked()
-btnAddCustomer_Click()
-btnDisplayCust_Click()
-btnModify_Click()
-btnDelete_Click()
-btnDisplayOne_Click()

EmpUI <Boundary>

-objEmpController: EmployeeController

-EmpUI_Load()
-lnkHomeEMP_LinkClicked()
-btnAddEmp_Click()
-btnDisplayEmps_Click()
-btnModifyEmployee_Click()
-btnDeleteEmployee_Click()
-btnDisplayOne_Click()

JobsUI <Boundary>

-objJobController: JobController
-objEmpController: EmployeeController
-objCustController: CustomerController
-objInvoiceController: InvoiceController

-lnkHomeJ_LinkClicked()
-JobsUI_Load()
-btnAddJob_Click()
-btnDisplayJob_Click()
-btnDeleteJob_Click()
-btnModifyJob_Click()
-btnDisplayPendJobs_Click()
-btnDisplayCompJobs_Click()
-btnDisplaySpecificJob_Click()

InvoiceUI <Boundary>

-objInvController: InvoiceController

-lnkHomeI_LinkClicked()
-InvoiceUI_Load()
-btnAddInvoice_Click()
-btnDeleteInvoice_Click()
-btnModifyInvoice_Click()
-btnDisplayAll_Click()
-btnDisplayPaidInvoices_Click()
-btnDisplayUnpaidInvoices_Click()
-btnDisplayOne_Click()
-btnDisplayWeekly_Click()

1

1

11 1

1

1

PaymentUI <Boundary>

-objInvoices: InvoiceController
-objCustomers: CustomerController
-objPayments: PaymentController
-objDisplay: DisplayandSave

-PaymentUI_Load()
-lnkHome_L_LinkClicked()
-btnAddPay_Click()
-btnCredit_Click()
-btnDisplay_Click()
-btnCancel_Click()
-btnViewReceipt_Click()

ManagerUI <Boundary>

-ManagerUI_Load()
-lnkHome_L_LinkClicked()
-btnAdd_Click()
-btnModify_Click()
-btnDelete_Click()
-btnPrint_Click()

1 1

112

Customer Classes

CustomerUI <Boundary>

-objCustController : CustomerController

-Customer_Load()
-lnkHomeC_LinkClicked()
-btnAddCustomer_Click()
-btnDisplayCust_Click()
-btnModify_Click()
-btnDelete_Click()
-btnDisplayOne_Click()

AddCustomerUI <Boundary>

-objAddCust: CustomerController

-AddCustomerUI_Load()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayCust <Boundary>

-DisplayCust_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteCust <Boundary>

-DeleteCust_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyCust <Boundary>

-ModifyCust_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddCustomer <Boundary>

-objAddCust: CustomerController
+strDelete: String

-ModifyAddCustomer_Load()
+New()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

CustomerController <Controller>

+Customers: List(Of Customer)

+AddCust()
+LoadCust()
+CheckExists()
+ModifyCust()
+DeleteCust()
+DisplayCust()

Customer <Entity>

-custType: String
-custName: String
-custPhoneNumber: String
-custAddress: String
-custID: String

+Get/Set custType
+Get/Set custName
+Get/Set custPhoneNumber
+Get/Set custAddress
+Get/Set custID

1
1

1 1
1

1
1

1

1

1

0..*

1

113

Employee Classes

EmpUI <Boundary>

-objEmpController: EmployeeController

-EmpUI_Load()
-lnkHomeEMP_LinkClicked()
-btnAddEmp_Click()
-btnDisplayEmps_Click()
-btnModifyEmployee_Click()
-btnDeleteEmployee_Click()
-btnDisplayOne_Click()

AddEmployeeUI <Boundary>

-objAddEmp: EmployeeController

-AddEmployeeUI_Load()
-btnSubmitEmp_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayEmp <Boundary>

-DisplayEmp_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteEmp <Boundary>

-DeleteCust_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyEmp <Boundary>

-ModifyEmp_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddEmployee <Boundary>

-objAddEmp: EmployeeController
+strDelete: String

-ModifyAddEmployee_Load()
+New()
-btnSubmitEmp_Click()
-btnClear_Click()
-btnCancel_Click()

EmployeeController <Controller>

+Employees: List(Of Employee)

+AddEmp()
+LoadEmp()
+CheckExists()
+ModifyEmp()
+DeleteEmp()
+DisplayEmp()

Employee <Entity>

-empName: String
-empAddress: String
-empPayRate: String
-empID: String
-schMon: String
-schTues: String
-schWed: String
-schThurs: String
-schFri: String
-schSat: String
-schSun: String

+Get/Set empName
+Get/Set empAddress
+Get/Set empPayRate
+Get/Set empID
+Get/Set schMon
+Get/Set schTues
+Get/Set schWed
+Get/Set schThurs
+Get/Set schFri
+Get/Set schSat
+Get/Set schSun

1 1

1

1

1
1

1
1

1

1

1

1

0..*

114

Jobs Classes

JobsUI <Boundary>

-objJobController: JobController
-objEmpController: EmployeeController
-objCustController: CustomerController
-objInvoiceController: InvoiceController

-lnkHomeJ_LinkClicked()
-JobsUI_Load()
-btnAddJob_Click()
-btnDisplayJob_Click()
-btnDeleteJob_Click()
-btnModifyJob_Click()
-btnDisplayPendJobs_Click()
-btnDisplayCompJobs_Click()
-btnDisplaySpecificJob_Click()

AddJobUI <Boundary>

-objAddJobs: JobController

-AddJobUI_Load()
-btnSubmitJob_Click()
-btnClear_Click()
-btnCancel_Click()

DisplaySpecificJob <Boundary>

-DisplaySpecificJob_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteJob <Boundary>

-DeleteJob_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyJobUI <Boundary>

-ModifyJobUI_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddJob <Boundary>

-objAddJobs: JobController
+strDelete: String
+strID: String

-ModifyAddJob_Load()
+New()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayCompletedJobsUI
<Boundary>

-objJobControl: JobController

-DisplayCompletedJobs_Load()
-btnClose_Click()

DisplayPendingJobsUI <Boundary>

-objJobControl: JobController

-DisplayPendingJobsUI_Load()
-btnClose_Click()

JobController <Controller>

+Jobs: List(Of Job)

+AddJob()
+LoadJob()
+CheckExists()
+ModifyJob()
+DeleteJob()
+DisplayJobs()
+DisplayJob()
+JobsinWeek()
+InvoicesforWeek()
+JobListChecker()

Job <Entity>

-jobLocation: String
-jobDescription: String
-jobID: String
-jobStatus: String
-empOne: String
-empTwo: String
-empThree: String
-CustID: String
-NumWeeks: Integer
-startDate: Date
-endDate: Date

+Get/Set jobLocation
+Get/Set jobDescription
+Get/Set jobID
+Get/Set jobStatus
+Get/Set empOne
+Get/Set empTwo
+Get/Set empThree
+Get/Set CustID
+Get/Set NumWeeks
+Get/Set startDate
+Get/Set endDate

1
1

1
1 1 1

1

1

11

1

1

1

1

1

0..*

115

Invoice Classes

InvoiceUI <Boundary>

-objInvController: InvoiceController
-lnkHomeI_LinkClicked()
-InvoiceUI_Load()
-btnAddInvoice_Click()
-btnDeleteInvoice_Click()
-btnModifyInvoice_Click()
-btnDisplayAll_Click()
-btnDisplayPaidInvoices_Click()
-btnDisplayUnpaidInvoices_Click()
-btnDisplayOne_Click()
-btnDisplayWeekly_Click()

AddInvoiceUI <Boundary>

-objAddInvoice: InvoiceController
-objCheckJobs: JobController

-AddInvoiceUI_Load()
-btnSubmitInvoice_Click()
-btnClear_Click()
-btnCancel_Click()

DisplayOne <Boundary>

-objInvoiceController: InvoiceController

-DisplayOne_Load()
-btnSearch_Click()
-btnCancel_Click()

DeleteInvoice <Boundary>

-DeleteInvoice_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyInvoice <Boundary>

-ModifyInvoice_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAddInvoice <Boundary>

-objAddInv: InvoiceController
-objCheckJobs: JobController
+strInvID: String

-ModifyAddInvoice_Load()
+New()
-btnSubmitInvoice_Click()
-btnClear_Click()
-btnCancel_Click()

PaidInvoices <Boundary>

-objInvControl: InvoiceController

-PaidInvoices_Load()
-btnClose_Click()

UnpaidInvoices <Boundary>

-objInvControl: InvoiceController

-UnpaidInvoices_Load()
-btnClose_Click()

InvoiceController <Controller>

-Invoices: List(Of Invoice)

+AddInvoice()
+EditInvoice()
+LoadInvoice()
+ApplyPayment()
+MakeID()
+DisplayOne()
+DisplayInvs()
+ModifyInvoice()
+CheckExists()
+CheckCust()
+getCustID()
+DeleteInvoice()

1
1

1

1 1
1

1

1
1

1

1

1

1

1 1

Invoice <Entity>

-invoiceID: String
-custID: String
-paidStatus: Boolean
-amount: Integer
-JobList: String

+Get/Set invoiceID
+Get/Set custID
+Get/Set paidStatus
+Get/Set amount
+Get/Set JobList

1

0..*

116

Payment Classes

PaymentUI <Boundary>

-objInvoices: InvoiceController
-objCustomers: CustomerController
-objPayments: PaymentController
-objDisplay: DisplayandSave

-PaymentUI_Load()
-lnkHome_L_LinkClicked()
-btnAddPay_Click()
-btnCredit_Click()
-btnDisplay_Click()
-btnCancel_Click()
-btnViewReceipt_Click()

AddPayment <Boundary>

-AddPayment_Load()
-btnSearch_Click()
-btnCancel_Click()

ViewReceipt <Boundary>

-ViewReceipt_Load()
-btnSearch_Click()
-btnCancel_Click()

CancelPayment <Boundary>

-CancelPayment_Load()
-btnSearch_Click()
-btnCancel_Click()

CreditPay <Boundary>

-CreditPay_Load()
-btnSearch_Click()
-btnCancel_Click()

AddPay <Boundary>

-objPayController: PaymentController

-AddPay_Load()
+New()
-btnSubmitPayment_Click()
-btnClear_Click()
-btnCancel_Click()

PaymentController <Controller>

+Payments: List(Of Payment)
-objInvController: InvoiceController

+AddPay()
+LoadPay()
+CheckExists()
+CancelPay()
+CreditPay()
+displayAPayment()

Payment <Entity>

-amountPaid: Integer
-CustomerID: String
-PaymentID: String

+Get/Set amountPaid
+Get/Set CustomerID
+Get/Set PaymentID

1
1 1

1

1

1

1

1

1

1

0..*

117

Manager Classes

ManagerUI <Boundary>

-ManagerUI_Load()
-lnkHome_L_LinkClicked()
-btnAdd_Click()
-btnModify_Click()
-btnDelete_Click()
-btnPrint_Click()

AddAppointment <Boundary>

-objAddApp: ManagerController

-AddAppointment_Load()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

displayAppointments

-objAppController: ManagerController

-displayAppointments_Load()
-BtnOk_Click()

DeleteAppointment <Boundary>

-DeleteAppointment_Load()
-btnSearch_Click()
-btnCancel_Click()

ModifyAppointment <Boundary>

-ModifyAppointment_Load()
-btnSearch_Click()
-btnCancel_Click()

ModidyAddAppointment
<Boundary>

-objAddApp: ManagerController

-ModifyAddAppointment_Load()
+New()
-btnSubmit_Click()
-btnClear_Click()
-btnCancel_Click()

ManagerController <Controller>

+Schedule: List(Of Appointment)

+addAppointment()
+loadSchedule()
+displaySchedule()
+deleteAppointment()
+modifyAppointment()
+printSchedule()

Appointment <Entity>

-appDate: Date
-appTime: String
-appTitle: String
-cusID: String
-appID: String
-appDescription: String

+Get/Set appDate
+Get/Set appTime
+Get/Set app Title
+Get/Set cusID
+Get/Set appID
+Get/Set appDescription

1 1 1

1

1

1

11

1

1

1

1

0..*

118

Dynamic Design Model

This is a detailed sequence diagram for 5a) Create a new invoice

119

This is a detailed sequence diagram for 5b) Cancel an existing invoice

120

This is a detailed sequence diagram for 5c) Modify an existing invoice

121

This is a detailed sequence diagram for 5d) Display/print an existing invoice

122

This is a detailed sequence diagram for 5e) Display/print a list of all invoices for a given week

with a payment status

123

This is a detailed sequence diagram for 6a) Record a full payment

124

This is a detailed sequence diagram for 6b) Cancel/credit a payment

125

This is a detailed sequence diagram for 6c) Print a receipt

126

This is a detailed sequence diagram for 7a) Add a new appointment

127

This is a detailed sequence diagram for 7b) Cancel an existing appointment

128

This is a detailed sequence diagram for 7c) Modify an existing appointment

129

This is a detailed sequence diagram for 7d) Print weekly schedule

130

GUI Model

Login Page

This is where a user logs in

Home Page

This is where a user navigates to the various categories

131

Customers Page

This is where a user sees all the customers and performs various requirements to customers

Adds Customer Page

This is the form to add a customer

132

Modify Customer Search Page

This is where a user searches for the customer he wants to modify

Modify a Customer Page

This is where the user modifies a customer’s info

133

Delete Customer Search Page

This is where the user searches for the customer they want to delete

Display Customer Search Page

This is where a user searches for a specific customer to display

134

Employee Page

This is where a user sees all the employees and performs various requirements to employees

Add Employee Page

This is where a user adds an employee

135

Delete Employee Search Page

This is where a user searches for an employee to delete

Modify Employee Search Page

This is where a user searches for an employee to delete

136

Modify Employee Page

This is where a user modifies an employee’s info

Display an Employee Search Page

This is where the user searches for an employee to display

137

Jobs Page

This is where a user sees all the jobs and performs various requirements to jobs

Add a Job Page

This is where a user adds a job

138

Delete Job Search

This is where a user searches for a job to delete

Display Completed Jobs Page

This is where a user looks at the completed jobs

139

Pending Jobs Page

This is where a user looks at jobs not completed

Modify a Job Search Page

This is where a user goes to search for a job to modify

140

Modify a Job Page

This is where a user modifies a job

Display a Specific Job Search Page

This is where a user searches for a specific job to display

141

Invoice Page

This is where a user sees all the invoices and performs various requirements to invoices

Add an Invoice Page

This is where a user adds an invoice

142

Delete an Invoice Search Page

This is where a user searches for an invoice to delete

Display the Paid Invoices Page

This is where a user views the paid invoices

143

Modify an Invoice Search Page

This is where a user searches for an invoice to modify

Modify an Invoice Page

This is where a user modifies an invoice

144

Unpaid Invoices Page

This is where a user views the unpaid invoices

Display an Invoice Search Page

This is where a user searches for a specific invoice to display

145

Payments Page

This is where a user sees all the payments and performs various requirements to payments

Add Payment Search Page

This is where a user searches for the invoice to add a payment to

146

Add Payment Page

This is where a user adds payment to an invoice

Cancel Payment Search Page

This is where a user searches to cancel a payment

147

Credit Payment Search Page

This is where a user searches to credit a payment

View Receipt Search Page

This is where a user searches for a receipt they want to see for a payment

148

Display Weekly Invoices Search Page

This is where a user searches for a week to view the invoices in that week

Weekly Invoices Page

This is where the weekly invoices are displayed

149

Manager Page

This is where a user sees all the appointments for the manager and performs various

requirements for those appointments

Add Appointment

This is where a user adds an appointment

150

Modify Appointment Search Page

This is where a user searches for an appointment to modify

Modify Appointment Page

This is where a user modifies the appointment

151

Display Appointments

This is where the appointments for that week are displayed

Delete Appointment Page

This is where a user searches for an appointment to delete

152

Flexibility of Our Design

When our team first began to design the basic layout of how we wanted our classes and code

organized, we had a limited knowledge about software architecture. We threw together some

entity classes and had a general idea of what we wanted, but our design was far from being

polished. Transitioning from Iteration 1 to Iteration 2 was a huge wake up call, as more and more

functionality was being required. This forced us to really improve upon our class organization

and structure. By the end of Iteration 2, our team had put together a class diagram we were proud

of. The layering of entities, boundaries, and controllers modeled a professional piece of software,

and this our design became more flexible. We hit the ground running in Iteration 3, as the

addition of new classes became intuitive given our solid foundation. Overall, the flexibility of

our design allowed us to work efficiently in the final stages of this project, which was a huge

accomplishment for us.

Tested Code

For our completed application, please refer to our Wiki. Over the course of this iteration, we

hand tested our code, as we did not learn about unit testing yet. We felt that hand testing was

sufficient, given the scope of this project but unit testing would be necessary if this application

was extended to handle a large amount of data.

153

Chapter 4: Conclusions

The experiences of the software development approaches have really altered our view on

software development. When we began this project, we were unaware of the amount of

preparation we would need to code. This was the first time that we were exposed to an iterative

approach; it was slower than it would normally be due to the lack of exposure. The hardest part

was our understanding of all these new subjects along the way as we did not fully understand

them until later in the project.

If we knew how to make a proper class diagram, proper interaction diagrams and other

proper documentation before this class and project, we could have avoided some of the

headaches we encountered during the first iteration especially. In the professional world of

software engineering, we would have developed our UML diagrams to focus on much more

detail. For the code, it was a similar problem. As our knowledge of Visual Basic grew, our GUI

and structure of code improved as a whole.

With this lack of knowledge and experience, we required more time for development

especially as we started new iterations. We were not only adding on to this software, but also

restructuring our code to be better and more object-oriented. We thought that overall this is an

efficient process to build real, professional software, but there is a serious need for experienced

programmers and software engineers to direct workflow. If done correctly the agile and iterative

approach is very powerful, but needs to be planned and directed correctly.

Using the object-oriented approach, the main advantage is that we can develop our

entities and make them very efficient for writing to files in the back end. It is also very easy to

understand the flow of the project by creating controllers that are objects. These controllers are

very easy to work with in the code. One of the disadvantages in the object-oriented approach is

that there is a possibility of serious restructuring if new requirements are introduced. Another

disadvantage is with the new entities there could easily be a lot of overhead work by adding new

controllers and/or new boundaries. Overall, the object-oriented approach is a great way to

develop professional software.

154

Chapter 5: Team Organization and Roles

The team was a single level team with not much leadership as we held each other accountable versus a

hierarchical group. However there were still roles and contributions for each person.

The team roles were as follows:

Philip Dwyer

He was the official team lead by completing all the weekly status reports. He was the documentation lead

as well by organizing most things that were not code related. The sequence diagrams were handle by him,

as well as other documentation. He updated the TOE tables to handle the 2
nd

 iteration. In general, Phil

handled the Wiki, so the errors in the Wiki were his responsibility.

Adam Sanders

He was the coding lead, which involved handling the majority of the code. Towards the end of this

project, Adam became more of the team lead as the last two weeks of the project involved mostly code.

With his duties, he molded into a vice team lead by organizing and informing our group of upcoming

deadlines and due dates. Also, in the early stages of the project, Adam contributed to the diagrams.

Max Brodbeck

He was the Dabbler or the “everything else” lead, which consisted of handling some of the code,

completing some of the diagrams, and performing some of the documentation. He wrote all of the Weekly

Schedule requirements code, redesigned some of the GUI, and worked on the Invoices requirements for

code. Also he updated the CRC cards and originally created the TOE tables. He originally created the

class diagrams as well.

Sean Gibbens

He was the diagram lead, which was the handling of the final class diagram and any other diagram that

spawned from the class diagram like the package diagram. Sean also handled the use case diagram

organizing it completely in the early stages of the project. In terms of coding, Sean contributed to the Jobs

section in our software.

155

Appendices

Peer Evaluation Forms

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Final CRC Cards

These are the final CRC Cards for all iterations with all six controllers and entities.

Customer <Entity>

Responsibility Collaborator

Provide Customer Info
(Name, Phone, Address, Repeat,
ID)

Job <Entity>

Responsibility Collaborator

Store job info
(When, Where, ID, Employees
Assigned)

Employee

Invoice <Entity>

Responsibility Collaborator

Store invoice info like customer
ID, Job ID, and whether it is paid
or not

Customer, Job

Employee <Entity>

Responsibility Collaborator

Provide information about
employee

Appointment <Entity>

Responsibility Collaborator

Provide information on the
appointment like date and time

Customer

179

Payment <Entity>

Responsibility Collaborator

Provide information on the
payment like customer and
amount

Customer

CustomerController <Controller>

Responsibility Collaborator

Add Customer
Load Customer
Check ID if exists
Modify Customer
Delete Customer
Display Customer

Customer
Customer
Customer
Customer
Customer
Customer

EmployeeController <Controller>

Responsibility Collaborator

Add Employee
Load Employee
Check ID if exists
Modify Employee
Delete Employee
Display Employee

Customer, Employee
Employee
Customer, Employee
Customer, Employee
Employee
Employee

JobController <Controller>

Responsibility Collaborator

-Add Job
-Load Jobs
-Check to see if ID exists for customer
and employee
-Modify Job
-Delete Job
-Display All Jobs, a Job, or jobs in a
week
-check to see what invoices are
worked on for the week

Customer, Employee, Job, Invoice
Job
Customer, Employee

Customer, Employee, Job, Invoice
Job
Job

Job, Invoice

180

InvoiceController <Controller>

Responsibility Collaborator

-Add Invoice
-Load Invoice
-Edit Invoices when modifying or
adding Jobs
-Check to see if IDs exist and get IDs
-Apply Payments to Invoices
-Delete Invoice
-Display Invoices As All or One
-Create Invoice ID

Customer, Job, Invoice
Job
Job, Invoice

Customer, Job, Invoice
Customer, Invoice, Job
Invoice
Invoice
Invoice

PaymentController <Controller>

Responsibility Collaborator

-Add Payment
-Load Payment
-Cancel Payment
-Credit Payment
-Display A Payment

Customer, Payment
Payment
Payment
Payment
Payment

ManagerController <Controller>

Responsibility Collaborator

-Add Appointment
-Load Schedule
-Display Schedule
-Delete Appointment
-Modify Appointment
-print Weekly Schedule

Customer, Appointment
Appointment
Appointment
Appointment
Customer, Appointment
Appointment

181

Final Use-case Diagram

This is the final use-case diagram that shows all three iterations’ completed work. For a closer

look, please refer to our wiki on Moodle.

Manager

Receptionist

Manage Customers
(M&R)

Manage Employee
(M&R)

Manage jobs/appointments
(M&R)

Manage customer invoices for one-time jobs

Manage customer invoices for regular jobs

Maintain manager's personal weekly schedule

Manage customer payments

Save information

Manage Customers
(Manager only)

Add customer

Delete customer

Modify customer info

Display customer info

Display customer list

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Add employee

Delete employee

Display employee info

Display employee list

Modify employee info

Manage Employee
(Manager only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Add new job

Delete job

Display job info

Display completed job list

Display pending job list

Modify job info

Display job list w/ completion

Manage jobs/appointments
(Manager only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Create new invoice

Cancel invoice

Modify invoice

Display invoice

Display invoice list

Record Payment

Cancel Payment

Print receipt

Manage customer invoices for all jobs
(Manager Only)

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Manage customer payments
(Manager only) <<extend>>

<<extend>>

<<extend>>

Add new appointment

Modify Appointment

Cancel Appointment

Print weekly schedule

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Text file
DB

