BU Theatre:Costume Database
Butler University EPICS: Spring 2016

Team Members & Roles:

Heath Barkdull:
Team Lead, Database Coding

Amy Hendricks:
Web App Design

Client: Teka England/BU Costume Shop

Professor/EPICS Administrator: Dr. Panos Linos

Table of Contents:

1) Project Summary

Abstract/Project ObjectiVe/OVEIVIEW.ie e iet e e et et e e e e tee e e et e e e s e e e en e e e eaeeeeanaeans
2) Requested Features and Potential Implementation
Overview Of ReqUEStEd FEATUIES. ..uunii it e e e e eeas 3

In-Depth Rundown of Implementation Plan.........ccouiiiiiiiii e, 4

3) Project Approach

[T 2 Y o [PP 6

Record Of Previous ENGEaAVOIS. .. uuie e eeeieieeeee et e st ee e s e e e e s e n e r e e e eaeaens 6
4) Design

Database Design Preamble. e e e 7
Database HierarChy. ... oo aas 7
Web ApPliCation DESIZN....cuieie e iei ettt e e e e 19

5) Future Work
Things Left UNAON . . e it e e e s 21
The Hands Of TOMOITOW.eiis et e e e e e e r e e e e e 22

6) References
(070 01 = Yot fl 1 0] 70 8 ' F= 1o o T 22
Y =Y LA L= L 22

7) Appendices

LYY L1V A o T PR OY 22
PoOWerpoint Presentation. ... it 23

Abstract:

This report details the work conducted during the fall semester of 2015 for the EPICS project
working with the Butler Theater Costume department on the development of an application
that enables them to track and maintain inventory. This project was continued in Spring of 2016
Included are the various things we researched and information we collected that enabled us to
complete the client’s requirements. The team structure and project management are outlined
as well as recommendations for future work that could be implemented by the next EPICS team
to take on this ambitious project.

Project Summary:

Project Objective/Overview:

Client Description:

Butler University Theater department is an incubator for the next generation of theatre artists.
Renowned as one of the best programs in the country, Butler Theatre strives to push the
boundaries of art as we create innovative productions and instill in our graduates an
entrepreneurial spirit that will help them to succeed in an ever-changing market. With a strong
liberal arts foundation, we foster the development of well-rounded, critical-thinking artists who
can plot their own successful path in theatre and in life. A critical portion of the Theatre
department is the costume shop. Under the umbrella of the costume shop; props, clothes,
shoes, and other items are created, modified, maintained and provided to the overall
department for use in productions. As a result of the support role that the costume shop gives
to the theatre department a lot of items are collected and stored for future use. These items
are numerous and at times difficult to keep track off.

As consequence to this tireless pursuit, the department has accrued a tremendous amount of
costumes and props over the years which they are finding more difficult to manage as the years
go on. The university has just recently granted the department a large space beneath the
soon-to-be-constructed parking garage to store their costumes and props, and the department
would like to acquire an efficient cataloging system to coincide with the massive transfer.

The Butler University Theater Costume Shop department is looking to develop an organizational
app for costume storage. The hope is to attach barcodes to our costumes and large accessories
and associate that barcode with a page that allows an item history to be tracked via pictures
and search phrases/categories in terms of available rentals, current location, and last time of
use.

That is where we come in. We at EPICS have been tasked with creating an application that will
facilitate the qualitative cataloguing of the Theatre Department’s stock alongside a few added
bells and whistles such as rental and administrative systems. With the guidance of facilitator,
Dr. Panos Linos, we aim to provide an elegant solution.

Contact Person: Teka England (tengland@butler.edu)

Requested Features & Implementation Plan:

Overview of Requested Features:

Database Features:

° Catalogues items based on physical attributes, storage location, and other identifying
features. Items are uniquely identified through a barcode ID and sequential database ID.

° Related attributes are divided into tables in order to cut the fat and increase the ease of
navigation.

° Database has a built in auto-backup feature that will periodically create a snapshot of the
database that can be reverted to in case of an emergency.

° Modification and searching of the database is done through the PHP web application.

Web Application:

° Filter/Search costume pieces by one or more of the following characteristics:

Characteristics (color, measurements, material, ect...)

Era (20’s, 30’s, medieval, fantasy ect...)

Clothing Type (hat, dress, shoe, ect...)

Location in Storage (tentatively denoted by section and row)

Previous Productions (Nutcracker: 1980, A Midsummer’s Night’s Dream: 2000, ect...)
Check-in Status (to filter what may currently be in stock)

° Search results may be displayed as a text list or in an image grid displaying the primary image
of each item. Results may be printed or sent to PDF

O O O O O O

° Iltem information screen contains all relevant information about the item in question as well
as pictures to identify the item. Linked items and rental history will populate as they are filled.
° As an admin, one has additional actions available to take:
o One can add, remove, and edit items in the database through the front end. This
includes the manufacturing of “outfits” or individual items that link together.
o One can manage rentals to both Butler students and other organizations using the
barcode system.
o After reading in the item barcode and inputting the renter information, one can print
out a rental sheet for records.
o One can revert to a previous database snapshot should it be necessary.

In-Depth Rundown of Implementation Plan:

Barcode Reading
@® Explanation: Program needs to be able to read in barcode values via a camera to associate the

barcode value with the item it is paired with. This item’s value will be put into a database and stored
with its associated data. (ie. Picture, Category, Tags, and In/Out Status)

@® Implementation: Barcodes are essentially long strings of characters and numbers in a graphical
format. Reading in a barcode would be used to create a unique item ID that could be used as half of
the primary key to uniquely identify every item in the database. The other half of the key would be a
local Database ID.

User Interface

@® Explanation: This undertaking requires some sort of GUI through which the user can perform all
of the necessary actions of the application through the front end. The Ul needs to be able to run on
Mac OS devices.

@® Implementation: Instead of creating a GUI in the form of a stand-alone program or application,
we will be using PHP to link our SQL database to a web application with a GUI that can be used from
both Mac and Windows device. This would serve as the workaround to our inability to code Mac
applications while still having the program be accessible from the department’s Mac devices.

Tree Organization by Item Type

@® Explanation: We need a system in order to logically sort through the items in the department
based on qualities intrinsic to their being.

@® Implementation: This is an easily remedied though the features intrinsic to a database. The SQL
language allows for the calling of certain items based on a combination of their qualities. With the plls
from the database that PHP can make, this can be implemented via coding of the front end.

Tagging System within Organization

@® Explanation: We would like to be add multiple items under the same tag for an item. Things such
as previous shows, related item ID’s, and things of that nature. Within the web app, we would like to
view these multiple items

@® Implementation: Either through seeding tables to host these multiple items or just listing
multiple values within a single database cell, the tagging system is implementable within the rules of
SQL. If we want related items to populate on the other end that would have to be written into the
backend of code, but that could very well be a later implementation.

Support for Multiple Pictures [ie. Different Views of a Pictures]

@® Explanation: In both GUI and backend, we would like to have an option for view multiple
pictures of the same item, in order to accommodate items that, say, have multiple layers or details on
the front and back. Due to Butler’s manly server space and the non-astronomical size of the database,
| don’t foresee there being too much issue in the way of space, but obviously, some system of
compression will need to be present.

@® Implementation: The database will have calls to compressed image files corresponding with its
item and PHP, being the SQL-friendly language that it is will make a call to the images in order to
display them as needed.

Adding and Removing Items with Admin Permissions

@® Explanation: As the BU Theatre Department’s stock will inevitably grow over time, we need to
allow for the staff to add to their database as needed. Unique item ID values, pictures, and attributes
need to be both creatable and editable once created, and items must be able to be deleted at an
admin’s discretion.

@® Implementation: On backend, we can create login credentials for a higher tiered user. We simply
write a script that would populate the database with a new item and then sequentially ask for the
user to input the attribute values. This higher user would also be able to drop an item identified by its
Unique ID value through PHP hooks to SQL.

Checking Items In and Out

@® Explanation: Allow clients of the customer to check items in and out of the store. The customer's
client information will be recorded in the program by the customer who will use that to track who has
what and when it should be returned.

@® Implementation: This is probably the last step in base level implementation for the project.
There will be item attributes for who checked out the item and when that check out occurred. If it is a
Butler student who checked out an item, both the name and ID number will be recorded. This
information will be run through a program that creates a check-out sheet with all relevant
information about the item being checked out and the person who is checking it out. This sheet is
then saved as a PDF ready to print.

Automatic Periodic Server Backups

@® Explanation: In order to prepare for the worst, we would like the database to snapshot on
occasion in order to facilitate backups. This is just a precautionary measure.

@® Implementation: MySQL has a built in feature that backs up the database on specified intervals.
We need only specify the interval.

Project Approach:

Preamble:

As no member of our team had prior experience in database design prior to this class, much of our
time was spent acquiring the skills necessary to undergo this project and figuring out the best medium
in which to complete this task. While this did reduce the amount of time we could spend developing
the final product, as students, the journey towards finding the correct path to take was beyond
valuable to our individual growth, having learned multiple computer languages and figured out our
way around many applications. Furthermore, the pitfalls that we encountered and took note of in our
efforts allowed us to more swiftly and knowledgeably move forward in our final path. We include this
section to help illustrate the less visible efforts made during the course of this project.

Assumptions and Constraints:

We started this program with 2 members on the team. While this is a normal amount for any other
project, it seemed small for the task we had at hand. One member had knowledge of a few
programming languages, while the other needed to be brought up to speed on the programming
languages that would be used during the course of the project. In the previous semester, there were 4
members who needed to be brought up to speed on 3 different languages, this time one member
needed to be brought up to speed on one language and it streamlined the entire process.

Building off of the previous groups work, we cut a lot of development time by mapping out our
program and executing our plan of action. We also trimmed time by settling on one programming
language and avoiding flipping back and forth.

Timeline:

@® 2/1-3/1: Project planned to be completed using Visual Basic for the front-end development and
database calls while having our database be managed through Microsoft Access. Since Amy is
unfamiliar with Visual Basic, she will be brought up to speed during this time.

@® 3/1-4/1: Progress was slow during this month. Both members are in the pep band and spent the
first 2 weeks of March Travelling to support the Basketball team. However, the team did regroup at
the end of the month and decided to narrow their focus on the app and completed several important
milestones, including the coding of the search, delete, and edit functions. A lot of progress on learning
databases was made.

@ 4/1-5/1: At this point, our entire team has acquired the skills necessary to implement the plans
developed throughout the semester. While we have been working on individual components of the
project prior to this period, it is at this point that we all have the required knowledge to begin linking
these components together as well as continue development of the application components.

Design

Database Design Preamble:

As it is difficult to accurately display the ins and out of an entire database system in a single report, we
have opted to include the hierarchy used to design our database. In order to properly understand the
layout of our database system from the hierarchy, please keep the following in mind:

1. Our database is broken up into many smaller tables containing information about qualities
that may or may not be applicable to a certain item. This was done to reduce the null space created
by a larger tabling system. As such, an item, uniquely identified by a “Database_ID” (a sequential
value that locally identifies the item) and a “Barcode_ID” (the string created when reading in an item’s
barcode), may have information stored in multiple tables depending on whether the qualities
identified in each table are applicable to the item in question.

2. The hierarchy uses a line to separate the individual tables, and the table title, which denotes
what item types these qualities are applicable to, are emboldened and underlined.
3. Each table contains columns to denote both “Database_ID” and “Barcode_ID” in addition to

columns for the qualities listed within. This is, again, done to link the qualities of an item by means of
its primary key.

4, The location identification is only a placeholder. We will devise a applicable system when the
plans for the storage space are finalized.

1D - Barcode = Gender - Era - Color - Waist

- Hips - Pattern = Style - Length = Notes = | Click to Add =
0

Above: Costume Inventory Database in Entirety before making changes through the app
Upload Pants

Barcode: 123456

] Image Upload:
Gender: |Male ¥

!_Choose File_i blue-jeans jpg

Era : Contemporary L
Color : Blue s

Pattern: Distressed v

Style: Jeans v

Waist 36 | Hips 36 | Length 230

Notes:

| Save | Please be sure to have entered a barcode prior to clicking save!

Pant entry form

T Pants
ID - Barcode = Gender Era - Color - ‘Waist - Hips - Pattern = Style - Length - Notes ~ Click to Add =
ba 123456 Male Contemporary Blue 36 36 Distressed Jeans 30
*® (New) 0

Above: Entry Submitted to Database

Database Hierarchy:
General:

o
0}
>
Q
0}
=

Male
Female
Unisex

m
=
Q

Fantasy

Ancient (greeks/romans/celts)
Medieval/Renaissance (1200-1500)
Tudor/Elizabethan (1500-1600)
Cavalier (1600-1700)

Colonial (1700-1800)
Regency/Empire (1800-1820)

Civil War/ Early Victorian (1830-1860)
High Victorian(1860-1890)

1900s

1910s

1920s

1930s

1940s

1950s

1960s

1970s

1980s

Contemporary

Non-Western (Asian, Indian, Balinese, African, South American, European)
N/A

Red
Pink
Orange
Yellow
Green
Blue
Purple
Black
White
Brown/Tan
Warm

00000000000 0000000000000 0000000
o
-

Cool
Neutral
Multi
Check-In Status
In
Out
O Rentee Identification
Location

Row

R1
R2
ect...

ONONO

® Column
C1
C2

ONONO

Clothing:

Size

@® Chest

24-26"
27-29”
30-32”
32-34”
35-37”
38-40”
40-42”
43-45”
46-48"
49-51”
52-54"
55-57"
58-60"
61-63”
64"+
N/A

ONONONONONONONONONONONONONONONG)

® \Waist

24-26"
27-29”
30-32”
32-34”
35-37"
38-40”

ONONONONONG)

O 4042
O 4345
O 46-48”
O 4951”7
O 52-54”
O 55577
O 58-60”
O 61-63”
O 64"+
O N/A

@® Hips
O 24-2¢”
O 27-29”
O 30-32”
O 32-3%
O 35377
O 3840”
O 4042
O 4345
O 46-48”
O 49-51”
O 52-54”
O 55-57”
O 58-60”
O 61-63”
O 64"+
O N/A

Pattern:

@® Floral

@® Geometric

® Plaid

@® Stripes

@® Dots

@® Paisley

@® Asymmetric

@® Distressed

® N/A

Pants

® Formal

@® Informal

@ Athletic

® Jeans

@® Occupational

Skirts

@® Length:
O Maxi
O Knee Length
O Mini

@® Shape:
O Mermaid
O Ball Gown
O A-line
O Wraparound
O Bodycon
O Bubble
O Pleated
O Pencil
O Tiered
O Yoked
O Circle
O Asymmetric
O Paneled
O Godet
O Tulip

@® Formality
O Formal
O Casual
O Occupational

Shorts

@ Athletic

@® Everyday

® Formal

Shirts

® Woven

O Collared

B Buttondown

B WingTip

B Mandarin

O Not Collared
O LongSleeve
O Short Sleeve

O Occupational
® Knit

O Short Sleeve

O LongSleeve

O Polo

@® Occupational
O Military
O Other

Jackets and Blazers
@® Fashion
@® Occupational

Blouses

@® Sleeveless

@® ShortSleeve
O Capsleeve
O Normal Sleeve
QO Flutter Sleeve

@® LongSleeve

@® Occupational

Sweaters

@® Cardigan
O Short sleeve
O Longsleeve

@® Pullover
O Shortsleeve
O Longsleeve
O Turtleneck
@ \Vests
O Button front
O Pullover
Sweatshirts
@® Hooded
O Zipfront
O Pullover
@® Crewneck
O Open front
O Pullover

Dresses

@® Llength:

O Fulllength
Tea Length
Knee Length
Mini

(¢}

Sheath
Hourglass
Mermaid
Princess
Shirtdress
A-Line
Smock
Empire
Wraparound
Sundress
Bodycon
Asymmetric
@® Sleeves/Straps:
Halter
Strapless
One Shoulder
Long Sleeve
Short Sleeve

ONONONONONONORONORONONOR NONONO)

ONONONONO)

Suit
@® Two piece
@® Three piece

Jumpsuits and Tracksuits

@ Athletic
@® Occupational
Outerwear

@® Waist length
O Lightweight
O Heavyweight
@® Fulllength
O Lightweight
O Heavyweight
@® Occupational
@® Cloaks/Capes

Accessories

Men/Women/All
Color (see clothing colors)
Era: (see clothing eras)
Materials:

Straw

Leather

Felt

Fabric

Fur

Vinyl
Flowers/Foliage
Feathers

Plastic

Metal
Gemstones (?)
Webbing

T
(Y]

ts:

Brim Size
Brimless
1-2"
3-4”

4+”

Type

Religious Hats
Balaclavas

Baseball and Trucker Hats
Berets

Academic Hats
Mortarboard

Biretta

Boaters

Bowlers

Bucket Hats

Knit Hats

Cadet Caps

Coifs

Derby

Driving Caps/Newsboys
Clippy Hats

Fantasy Hats

Fedoras

0000000000000 0OC0KOCOFTS

Greek Fisherman Hats
Ethnic Hats
Homburg

Hood
Occupational
Drover

Pork Pie

Ring Hats

Top hat
Tricorn/Bicorn
Turban

Trilby
Toques/Beanies
Walking Hat
Wedding Veil
Fez

Shoes:

Men’s 6/6.5
Men’s 7/7.5
Men’s 8/8.5
Men’s 9/9.5
Men’s 10/10.5
Men’s 11/11.5
Men’s 12/12.5
Men’s 13/13.5
Men’s 14/14.5
Men’s 15/15.5
Women’s 5/5.5
Women’s 6/6.5
Women’s 7/7.5
Women’s 8/8.5
Women’s 9/9.5
Women’s 10/10.5
Women’s 11/11.5

00000000000 OOCBOCGOOOGO
o

Heel height
0-1”
2-3”
4-5”
5"+

oNoNoN NonoNoN NoNoNoNoN NoNohoN N N N N N N N N N N N N N N B
®

Platform
Pump
Peep Toe
Mule
Slingback
Mary Jane
T-Strap
Character Shoe
Oxfords
Monkstrap
Wingtip
Loafer
Espadrille
Bedroom Slipper
Sneakers/Athletic
Boat Shoes
Slip-ons
Velcro
Sandal
Athletic
Saltwater
Gladiator
Flip Flop
Dance Shoe
jazz shoe
pointe shoe
ballet slipper
Boot
Wellington
Cowboy
Combat
O Chukkas
O Heeled Boot

Scarves and Shawls

Fiber Type:

® Wooly

@ Silky

@® Cottony

@® Polarfleece

Size

@® Small (head sized)

® Medium (around neck sized)
@ Large (around shoulder sized)
@® XL (bigger than large)

Shape

Triangular

Rectangular

Square

Oddball

Gloves

Use:

® Winter
@ Utility
® Formal
Length

@® Opera
@® Elbow
® \Wrist

o
()
e+
7]

Formal
Casual
Occupational
Skinny
Embellished
Woven
Waist Measurement:
<24”

24-26"
27-29”
30-32”
33-35”
35-37”
38-40”
41-43”
44-46"
47-49”
50-52”
53-55”
56-58”
59-62”

63+”

XXX XX N
o

Handbags:

Style:
Backpack
Tote
Clutch
Cross Body
Messenger

END HIERARCHY

Web Application Design:

The web application was developed in ASP.net and Visual Basic with use of Visual Studio 2015. We
have finished the basic, barebones app and began adding features that were considered stretch
features.

8 Costurne Manager = m} X
Barcode: |B34{]21 | Type: |Wool v| Period:

Sa: [Medum V| Gender: [Male v] LShow fgagdnises o
Location RIC1 v Color: |Red V| lestUsed ol om -

Comments: Purchased from Goodwil 2004. Hole in left front pocket

Add Save Exit

Location ;ailts[;me Size Color Period Type Comments ﬁl’;ﬁ:; Gender
» I Row 1 Column 2 |11/23/2012 Medium |Red 1920' Woal Diescription: Mutcracker 2012 | Male
Row 2 Column 3 | 1/10/1945 Large Blue 1940% | Cotton Description: Aladdin 1945 | Female

Row 3 Column 4 |10/10/0200 Small White 2000 Polyester | Description Pui.(emun 2000 | Unisex

Above: Mock up of the original “Item Information” screen.

Since the first semester focused on the development of a backend, this semester focused on the
actual creation of a web app to handle the database backend.

Relevant Code Snippets:

The following code snippet is a sample of the program that commits changes to the database.

Protected Sub buttonSave_Click(sender As Object, e As EventArgs) Handles buttonSave.Click
Dim i As String
Dim j As String
Dim k As String
j = TextBox1.Text
j = LTrim(j) 'Trim Functions take off spaces in the filename to avoid issues
j = RTrim(j)
i=j+".jpg" 'This merges everything together to make the next command cleaner
uploadPhoto.SaveAs(Server.MapPath("~/photos/") & i) 'This handles the photo saving.
'server.MapPath tells the program you want to access the information within the programs
'directory, and the following ~/photos/ tells it where to find it within the directory
'Doing it this way only allows .jpg to be saved.

Dim connl As New OleDbConnection("Provider = Microsoft. ACE.OLEDB.12.0;Data
Source=C:\Users\Heath\Documents\Visual Studio
2015\WebSites\WebSite4\Databases\theater.accdb")

connl.0pen()

If (Label2.Text = "Pants") Then

k = "INSERT INTO Pants(Barcode, Gender, Era, Color, Waist, Hips, Pattern, Style, Length, Notes)
VALUES (" & Me.TextBox1.Text & "',"" & Me.DropDownListl.Text & "','"" & Me.DropDownList2.Text &
""" & Me.DropDownlList3.Text & "','"" & Me.TextBox2.Text & "','"" & Me.TextBox3.Text & "','"" &
Me.DropDownlList4.Text & "','"" & Me.DropDownList5.Text & "','"" & Me.TextBox4.Text & "',"" &
Me.TextBox5.Text & "')"

End If
If (Label2.Text = "Shirts") Then
k = "INSERT INTO Shirts(Barcode, Gender, Era, Color, Pattern, Style, Substyle, Other, Notes)
VALUES (" & Me.TextBox1.Text & "',"" & Me.DropDownListl.Text & "','"" & Me.DropDownList2.Text &
""" & Me.DropDownlList3.Text & "','"" & Me.DropDownlList4.Text & "','"" & Me.DropDownList6.Text &
""" & Me.DropDownlList7.Text & "',"" & Me.DropDownlList8.Text & "', & Me.TextBox5.Text & "')"
End If

Dim cmd1 As New OleDbCommand(k, conn1)

Dim dal As New OleDbDataAdapter(cmd1)
Dim dt As New DataTable

dal.Fill(dt)

connl.Close()

MsgBox("RECORD ADDED")

This code snippet handles the loading of items from the database.

Protected Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
If DropDownlList1.Text = "Pants" Then
Me.GridView1.DataSourcelD = "SqlDataSource2"
End If
If DropDownList1.Text = "Shirts" Then
Me.GridView1.DataSourcelD = "SqlDataSource3"
End If
i = TextBox1.Text
Imagel.lmageUrl = "~/photos/" + i+ ".jpg"

End Sub

Future Work:

Things Left Undone:

While we did spend a good chunk of time settling on the framework of the project, doing so has made
the project path exceedingly clear going forward. What follows is a list of features that yet need to be
completed.

Development of Stretch Functions

Implementation of the Filter search

Implementation of multi-image view

Creation of tiered administrative privileges

Continue to reach out to Nathan Partenheimer to find the database a permanent home
Connect the front-end to the restore database backup function

Streamline the addition portion of the database editing functions

While more tasks may pop up as the projects nears completion. These are the only issues that remain
in the scope of the current objective.

The Hands of Tomorrow:

Things we have learned this semester include database programming in MYSQL and Microsoft Access,
familiarity with Visual Basic, ASP.Net. We got exposed to a lot of different languages and methods of
thinking. In the end were able to implement the basic requirements for the client and include a few
stretch goals.

In the future Amy and Heath would both like to continue working on this project whether it is in EPICS
or on our own time.

References

Contact Information:

Development Team
Heath Barkdull: hbarkdul@butler.edu
Amy Hendricks: achendri@butler.edu

EPICS Program Administrator
Dr. Panos Linos: linos@butler.edu

Theatre Department Client
Teka England: tengland@butler.edu

Relevant Websites:

https://www.codecademy.com

@® Primary website for learning necessary programming languages

https://www.mysgl.com
@® Product site for MySQL

https://www.jetbrains.com/phpstorm
@® Product site for PHPStorm

https://www.apachefriends.org/index.html
@® Product site for Xampp

https://www.butler.edu/theatre
@® Webpage for Butler Theatre

http://epics.butler.edu
@® Webpage for Butler EPICS program

mailto:hbarkdul@butler.edu
mailto:achendri@butler.edu
https://www.codecademy.com/
https://www.mysql.com/
https://www.jetbrains.com/phpstorm
https://www.apachefriends.org/index.html
https://www.butler.edu/theatre
http://epics.butler.edu/

Appendices

Relevant Code:
The application prototype can be found on the artifacts page.

Powerpoint Presentation:

The powerpoint can be found on the artifacts page.

