

Butler Theatre Database Project

Justin Rice, Andrew Nesler, Steven Nirenberg, Gwen Spencer, and Grace Maynard

EPICS: Engineering Projects in Community Service
Spring 2020

2

Acknowledgements

A big thank you to Nate Partenheimer for his endless assistance in developing our website and
database. His continuous support throughout the lifetime of this project has been truly
invaluable. Thank you to Megan Wiegand for allowing the EPICS class to work on her project.
We have gained a significant amount of knowledge from working on this project and are
thankful that the theatre department turned to EPICS for this project. Many thanks to Dr. Panos
Linos for guiding us throughout this project and for encouraging us in completing this project.

3

Table of Contents

Abstract 5

Chapter 1: Introduction 6

Chapter 2: Requirements Specifications 8

Chapter 3: Architecture 8

Chapter 4: Design 11

Chapter 5: Implementation 14

Chapter 6: Quality Assurance & Testing 15

Chapter 7: Project Organization & Management 15

Chapter 8: Future Work 25

References/Bibliography 26

Appendices 27

4

Glossary and Terminology

Adobe XD:​ A wireframe design platform for website development. Adobe XD allows users to
create a click-through prototype of the wireframe design and easily share designs with team
members.

ERD:​ An entity relationship diagram (ERD) describes the structure of a database. An ERD
shows the relationships between tables and attributes of the data within those tables.

Javascript:​ JS is a programming language often used in many web applications and interacts with
CSS & HTML languages.

mySQL:​ MySQL is an open-source relational database management system.

PHP:​ A popular general-purpose scripting language that is especially suited to web development.

Rest API:​ An API is an application programming interface. It is a set of rules that allow
programs to talk to each other. The developer creates the API on the server and allows the client
to talk to it. Representational state transfer (Rest) is a software architectural style that defines a
set of constraints to be used for creating Web services.

UUID:​ A universally unique identifier is used to ensure that each entry in the database has a
unique identifying key.

WordPress:​ An open-source software written in PHP used for designing blogs, websites, and
apps. WordPress has many plugins available for easy website customization, as well as
pre-designed website templates. Websites can also be customized with PHP, HTML, or CSS.

CSS (Cascading Style Sheets):​ A style language used in this context for website formatting. CSS
is optimal to use to describe the fonts, colors, and other design features a website should use.

5

Abstract

The Butler University Theatre Department houses over 15,000 garments that are used both by
the university and outside vendors. Due to the large number of garments, there is currently no
efficient method for handling and organizing these garments. This project seeks to develop both
a database and a web application to improve the efficiency of the Theatre Department in locating
garments and for outside users in renting the garments. The database will house all of the
applicable information about the garments owned by the department and the web application will
be an online store that will allow users to search and filter for specific garments for the purpose
of renting them. For the Spring of 2020, the Butler Theatre EPICS team was able to develop the
framework for the database and begin the front-end development of the website.

6

Chapter 1: Introduction

Section 1.1: Problem Statement and Objectives

The theatre department has well over 15,000 articles of clothing in their collection. Organizing
and categorizing these costumes is a monumental task and having a system to keep track of the
different pieces would make the lives of the staff much easier. In figure 1 shown below, the
storage area where all of the garments and costumes are housed can be seen. The main goal of
this semester was to design and develop a database system and application for the Butler Theatre
Department to help organize their costumes and to increase the efficiency of accessing items.
There are several objectives that were identified at the beginning of the semester that were
necessary to achieve the goal of a working website and database. ​The first objective was to
identify a suitable website that could both complement the database and offer e-commerce
capabilities. The second objective was to design and build a database that could store all of the
data associated with each garments specific attributes (i.e. color, size, era, sex, etc.) and organize
in a way that was convenient for the client’s needs. The last objective was to identify and begin
to build a bridge between the front-end (website) and back-end (database) through developing a
custom API layer.

Figure 1:​ Racks holding garments in the storage and scene shop

7

Section 1.2: Motivation and Rationale

The current system for renting garments does not have a web interface or any automated system.
As a result, it is difficult for users to know what the garments look like that they are renting and
the condition of these garments. By creating a database and web application, users will be able to
see photos of the garments remotely prior to renting and will be able to select garments that fit
their exact needs. This system will also provide a way for the Theatre Department to easily track
orders and to know which garments are currently being used. Furthermore, a web application
will be more accessible to users, because it can be easily accessed anywhere and can be set up
for use by screen readers and other accessibility tools. This will ensure that any individual
looking to rent garments from our Theatre Department will have no obstacles in doing so.

Section 1.3: Description of the Customer

Renowned as one of the best programs in the country, Butler Theatre strives to push the
boundaries of our art as we create innovative productions and instill in our graduates an
entrepreneurial spirit that will help them to succeed in an ever-changing market. With a strong
liberal arts foundation, we foster the development of well-rounded, critical-thinking artists who
can plot their own successful path in theatre and in life.

Section 1.4: Approach to the Project

The approach to this semester's project was to establish a dedicated virtual machine on Butler’s
infrastructure, and create a mySQL relational database for garment attribute information storage.
From there we downloaded the WordPress package to begin development on a front-end
interface. We also used Adobe XD to prototype a wireframe design to show the client, providing
a foundation for the front-end interface design and expectations moving forward. Once the
garment database and WordPress site were created, we identified the approach to development of
a custom-tailored API layer to bridge the interface to the database storage.

Figure 2: ​Diagram of how the data will flow from the database to the website. The website will

pull attributes, images, etc. from the database and the API is the facilitator.

8

Chapter 2: Requirements Specifications

Section 2.1: Project Requirements

The client had many goals for the appearance and functionality of the website. Primarily, the
client wanted to conclusively store inventory information, as well as offer the ability for visitors
to rent and view inventory remotely. As a result, the website will need to include shopping
interfaces and form submission, ability to filter items, view images of garments, and search for a
specific piece by attribute. The client also wanted the ability to show the availability of an item,
how it should be washed, the current condition, and descriptionary attributes (style, color,
decade). Another, rather laborious process of this project will be adhering barcodes to garments
with serial numbers referencing UUID in the database to track items. This will allow for
potential development of administrative interfaces to control garment inventory and confirm
stock, later down the road. This project has no specific timeline, since the current system for the
Theatre Department is still fully functional. Maps from the client showing the layout of the
warehouse can be found in the Appendix in Figures A1 and A2.

Chapter 3: Architecture

Section 3.1: Overview of System Architecture

The current project and all its associated packages and processes are hosted on a virtual machine
on Butler’s infrastructure. This will ensure long-term maintenance and support, as well as
simplify the porting of the network interface to a sub-domain of the University.

Within the virtual machine we used Vagrant to deploy a functional instance of a standard
WordPress application. We decided to begin implementation of a web interface using WordPress
(WP) due to the simplicity and wide customizability of the platform. Rather than building our
own LAMP stack and writing custom code and outputting HTML directly, we decided that the
group would accomplish the most together through a simplified UI. From the fresh WP instance,
we installed Advanced Custom Fields (ACF) to allow more flexibility through a friendly
development user interface. While there exist methods for directly implementing an existing
wireframe design such as the one we created to a wordpress website, due to our current
understanding we decided to continue a wordpress-only implementation to see how far that got
us. We started by creating custom fields and post types to suit our needs for this project. ACF
allowed us to create different forms of content on the website beyond posts and pages. This is
essential to begin development of a highly specific application in wordpress, since the original
function of the service is to simplify creating websites for blogs or that fanfiction that you and
your internet friends in middle school wrote. For example, we have created a “shirts” post type,
so each garment that is classified as a shirt will be able to be displayed similarly on the finished

9

website. Refinement and organization of the implementation of ACF into WP is not yet fully
understood, so much of this portion of the development could still be up for discussion.

WordPress offers many other advantages, including already existing implementation through
mySQL relational databases. Given this convenient setup, we went into the VM, set correct
permissions and created an additional database specific to garment attribute data storage. To
avoid full command line implementation, we installed phpMyAdmin for a database management
UI. Queries for creating the databases and mapping primary keys were created in shared text
files, adapted as we learned more about our clients needs, and eventually injected into the
phpMyAdmin interface to create the ERD in Figure 2.

Our first approach to tackling the garment storage was to create a mySQL relational database,
alongside the wordpress db, called garment_inventory. This primary table aims to store general
attribute information, with lookup tables attached to simplify sorting later. Additionally, each
garment type has a table for their own specific qualities. This current design has been
implemented through query scripts mentioned prior and saved to a common github repository,
which simplifies further changes and design alterations down the road. Additionally,
improvements to this current design have been discussed in detail with relevant professionals and
will be mentioned in the Future Work section. Database design follows the general format seen
in Figure 2.

Figure 3:​ Database ERD

Functional tables on the left will hold generic standardized information such as color, size,
gender, era and ethnicity. This naming and structure is pseudonymous, since these will
eventually be adapted to the format of lookup tables, but awaits implementation due to time
restrictions. The database will feature one primary table on the right will be used to store a
UUID, description, timestamp and other universal data, while the tables on the left will store
garment-type specific qualities. There has been much debate regarding the potential hurdles that

10

will occur down the road stemming from this choice in database design, so development has
remained general until this time. We instead focused on gathering the clients needs and identified
attributes that needed included. This current structure will require significantly more complex
queries when developing the API layer. Due to the desire to create a rental interface, document
store database systems such as MongoDB may prove more efficient later as well. Another
potential fix would be to use a database supporting JSON data types. This would allow us to use
PostgreSQL to store garment specific data in a JSON map that would require a single column.
This JSON map can then be queried for any of its attributes or even indexed itself. Implementing
such a system would improve search efficiency as well as simplify development of the API.

Figure 4: ​Sample create statement for primary table garment_inventory

Figure 4 depicts a sample of the create query for our primary garment inventory table. As
commented, the first integer value is not properly configured to increment a unique identifier.
The goal for that column would be to create a field that represents the garment universally, and
embed a function to automatically increment as data fields are added, ensuring no duplicate
values as well. Some functions such as this can be implemented through the user interface of
PHPmyAdmin, however cannot be executed without understanding of the function itself.
Because of this, we have opted to create the database in a text file, making changes based on the
needs of the UI when necessary.

For our purposes, we will need to construct an additional software layer that will query specified
data from the garment database, and hand it off to the wordpress application to process and
output in a friendly manner. Nate gave us significant insight as well as a brief lesson in Python
API creation using our VM instance, but due to the preferences of those writing the code, we

11

decided to stick with javascript as our language instead. This API layer will translate buttons in
search functions and site navigation, and translate them into queries familiar to a SQL database.
For example, if you navigate to search for all blue hats size 7.5 , the database needs that in its
own language. So the API layer will attach the fields sort by mens, blue, pants, into a proper
pseudo-query:

SELECT * FROM garment_inventory WHERE hat_size = 7.5 && color = blue

An API layer accomplishes this, by using lookup tables to map variables to form data with sql
statements, the front end interface will be able to read from the relational storage. Further notes
regarding specifics will be provided with the project files.

Section 3.2: System Platforms

System is currently hosted on a virtual machine running on Butler’s infrastructure for a
development environment. This development environment encloses all the necessary packages
for Wordpress and mySQL to host the program. Development should continue in this secure
environment until published, when default passwords must be changed and back-end
management tools secured. Database management accessible through PHPmyAdmin webUI
portal ​10.131.3.197/​phpmyadmin/. Wordpress management provided from same.host/wp-admin/.
Authentication information will be provided securely with project files.

Chapter 4: Design

Section 4.1: User Interface Overview

We used AdobeXD in order to design a wireframe of the user interface. This process helped us
determine how we would like users to interact with the website. We also received input from our
client on our design in order to understand how they would want users to be able to interact with
the website. Some pages of the wireframe are included below in Figures 5 and 6. There are more
images of the design work in the Figure A3 and A4 in the Appendix. The wireframe may be
viewed in its entirety at the following website:

https://xd.adobe.com/view/5508ef11-f71a-4a69-7eb2-3ca67ed7ac43-2339/​.

For the design of the wireframe, a similar style to Butler’s main website (Butler University) was
chosen. A color palette that has similar colors to Butler’s brand was used throughout the
wireframe and the recommended substitute fonts, Georgia and Helvetica, were used primarily.
The goal of the design of the website was to showcase a modern and simplistic design, but to

https://10.131.3.197/
https://xd.adobe.com/view/5508ef11-f71a-4a69-7eb2-3ca67ed7ac43-2339/

12

also encourage users to rent from the garments available. We consulted Target.com (Target) for
inspiration for an e-commerce website.

To help display all the garments that the Theatre Department has to offer, professional stock
photos of the garment warehouse were acquired from our client. These photos have been used
both on our wireframe and on our WordPress site.

Figure 5:​ Home page of the wireframe design

13

Figure 6:​ Product Description Page

After having the design of the wireframe approved by the client, we began designing a
WordPress website based on the wireframe. As shown in Figure 7, we successfully began
implementing key features of the wireframe into WordPress. We imported images from the
wireframe onto the website, established matching fonts and color schemes, and developed a
similar menu bar. As further discussed in Chapter 8, future groups will need to continue
developing the WordPress website to match the design of the wireframe.

14

Figure 7:​ WordPress Homepage

Chapter 5: Implementation

Section 5.1: Implementation Languages

There were several languages used for different aspects of the project. For the WordPress
package, PHP, CSS, and mySQL were required for installation and were used in a virtual
machine running with vagrant and virtualbox. To get us started on the API layer, we introduced
some essential ideas and functions using Python in a virtual machine. For the future the API will
be written in Javascript using Express.js and Node.js. For the database

Section 5.2: Distribution of Work

The group was split up into two different sections: front-end application and the database and
back-end application. Gwen, Grace and Justin were primarily responsible for the design and
implementation of the front-end work. They designed the wireframe in Adobe XD and began the
implementation of the design into WordPress. Andrew and Steven were primarily responsible for
all of the back-end work. Andrew designed and tested the create queries for the database. Steven
was responsible for the research into the API. Their combined efforts, with input from Nate

15

Partenheimer, Michael Burroughs, and Butler’s IT department worked to create a functioning
relational database in the development environment.

Chapter 6: Quality Assurance & Testing

Due to several of the unforeseen challenges presented in this project, there is not currently a
conclusive working prototype of the entire system. The website does host a regular web page
with static data displayed and the database is working and capable of storing data. However, due
to time constraints a working API was not developed and implemented.

Chapter 7: Project Organization & Management

Section 7.1: Team Organizational Structure

The team is structured such that every individual is responsible for their own tasks. The assigned
roles with the team include: team leader, client liaison, database developer(s), and documentation
and website lead. The team leader is the head member of the group and coordinates all group
assignments.

Section 7.2: Team Roles and Contributions:

Team Leader: Justin Rice

Justin is a senior from Fowler, IN studying economics and mechanical engineering with a minor
in computer science. He was the team leader and helped guide the team towards achieving the
stated goals. His primary responsibilities were assigning tasks, writing weekly summary reports,
and communicating with Dr. Linos. He also helped to design and create the website wireframe in
Adobe XD and set up the WordPress site.

Client Liaison: Gwen Spencer

Gwen is a senior from Tampa, FL majoring in actuarial science with a minor in business
administration. She was the primary source of communication between the Theatre Team and the
product owner. Her main contributions were in the front-end side of the project. She helped to
create the wireframe for the Theatre website and to set up the WordPress site.

Database Developer: Andrew Nesler

Andrew is a senior from Chesterfield, Missouri studying computer science. He maintained
communications and worked regularly with Nate Partenheimer to progress implementation on
the database infrastructure. Together, they set up the working environment for website and

16

database administration. Andrew then focused on database development and created a
query-generated ERD reflecting the attributes from the needs of the client. To do so he worked
with the client to discuss how the database worked for her and what data is most relevant to her
needs. Andrew will continue progress on this project after the semester and into the fall, since
full scale pictures of a project can be difficult to communicate.

Database Developer: Steven Nirenberg

Steven is a sophomore from Coconut Creek, FL, majoring in software engineering. His major
contributions were in the back-end side of this project, setting up the restAPI for the database
and for the website.

Documentation and Website Lead: Grace Maynard

Grace is a junior from Normal, IL majoring in math with a minor in management information
systems. She created and updated the Theatre Team website, documented the progress made as a
team, and kept track of any essential documents. She helped construct the wireframe for the
Theatre website and build the WordPress site, so her main contributions were seen in the
front-end development.

Section 7.3: Project Management Process

The team used several methods to manage and achieve the tasks that had been set. A group chat
and email were the primary forms of communication between the team and Microsoft Planner
was used for accountability and to set deadlines for the different aspects of the project. Google
Drive was used to organize our presentations and any word documents. Microsoft Planner was
used to help keep track of documents. The EPICS website was utilized as a repository for our
Sprints and for each WSR. Lastly, Github was used to store all of our code.

Section 7.4: Weekly Status Reports

A Weekly Status Report was shared at the beginning of each week to address red flags, issues,
accomplishments, and action items for that week. They allowed our team to reflect on the
progress we had made, as well as determine the tasks on which we needed to focus. Each WSR is
attached below.

17

WSR 1:

18

WSR 2:

19

WSR 3:

20

WSR 4:

21

WSR 5:

22

WSR 6:

23

WSR 7:

24

WSR 8:

Section 7.5: User’s Manual

As discussed previously, the system as a whole is not implemented completely and functions
only independently. Therefore, a user manual is not necessary at this stage of the project. In the
future, after the API is built and can effectively communicate with the WordPress site and the
database, a user’s manual will be an important document for the client and other users.

25

Chapter 8: Future Work

Section 8.1: Future Work

The main work to be completed in future semesters will be connecting the database and the
front-end user interface, polishing the front-end design elements, and testing for quality
assurance and breakability.

For the front-end user experience, the website will need to be further updated to match the design
of the wireframe. We were successful in building a framework for the website this semester and
hope that future groups will complete the rest of the website design. Some specific features that
will need to be implemented include e-commerce capabilities, accessibility features, login
options, and auth0 login for administrative purposes. The website should also be optimized for
use on all devices (computers, tablets, phones, etc.). Lastly, the administrative view of the
website should be intuitive enough for an individual unfamiliar with the software to use.

Future Groups will be expected to continue to develop and hopefully complete the REST API.
As of right now, the languages of choice will be Express.js and Node.js. While changes may
occur, this is not expected. A current member, who will return, is learning basic javascript and
plans on learning some Node and Express in preparation for EPICS fall 2020 semester.

Also, the aforementioned adaptation of the table to use page views using PostgreSQL has had
little research or reflection in current design, even though it will likely be the most efficient
strategy to read the database with a rest API.

For the back-end there are several ways that future teams could improve upon the current
infrastructure. In the future, groups should also consider how images and data will be inputted
into the database. An easy method for uploading image files into the database should be created,
as well as an intuitive way to input garment data. As the database was developed, constant
reconstruction and re-injecting SQL scripts was necessary to adapt over prior table constraints.
Changes such as migrating functional tables to lookup tables using natural keys instead of integer
primary keys are halfway done, as well as ensuring those lookup tables are properly associated to
the primary garment_inventory table. The implementation of an Identity function to
automatically increment a universally unique per-garment identifier has not been completed at
the time of this writing, due to time and understanding (or lack thereof) of SQL queries.

Future groups should also work to test the application for quality assurance and breakability.
Since our client will be the individual inputting data into the database, it is important that the
client would have no opportunity to interfere with the database design. Also, any user could visit
the website and search for garments, so the website should be tested to ensure that any user could
easily use the search capabilities of the website.

26

Bibliography

Butler University. (2020). Retrieved February 10, 2020, from ​https://www.butler.edu/

Butler University 2019 Style Guide. (2019). Retrieved from

https://www.butler.edu/sites/default/files/bu-brandguidelines2019-web.pdf

Schäferhoff, N. (2016, January 21). How To Create And Customize A WordPress Child Theme.

Retrieved March 2020, from
https://www.smashingmagazine.com/2016/01/create-customize-wordpress-child-theme/

Target. (n.d.). Retrieved February 10, 2020, from ​https://www.target.com/

https://www.butler.edu/
https://www.butler.edu/sites/default/files/bu-brandguidelines2019-web.pdf
https://www.smashingmagazine.com/2016/01/create-customize-wordpress-child-theme/
https://www.target.com/

27

Appendix

Figure A1:​ Costumes Stock Map

28

Figure A2:​ Costume Stock Map Shelving Units

29

Figure A3:​ Costumes page of the wireframe design

30

Figure A4:​ Costume page of the wireframe design

